More News
- [July
2021] Our paper on model inverse attack and dark object
detection
in low-light environment based on Multitask AET were accepted by ICCV
2021.
- [December
2019] A paper "PC-DARTS: Partial Channel Connections for
Memory-Efficient Architecture Search" was accepted by ICLR 2020 [pdf].
A fast neural architecture search (NAS) algorithm was developed, orders
of magnitude faster than DARTS.
- [November 2019] A
paper "POST: POlicy-based Switch Tracking" was accepted by AAAI 2020.
- Four papers were accepted by
CVPR 2020. Amogn them are applying
AET (Auto-Encoding Transformations) for unsupervised/self training of
Graph Convolutional Networks
[pdf],
and Generative Adversarial Networks [pdf].
- Dr. Qi will chair "Deep
Learning for Multimedia
Processing and Analysis I" [link]
and "Image/Video Representation" [link]
at ICASSP 2020.
- Our paper "Hierarchical Long
Short-Term Concurrent Memory for
Human Interaction Recognition" has been accepted by IEEE T-PAMI.
- Dr.
Qi gave a tutorial on "Small Data Challenges in Big Data Era" at IJCAI 2019. See the
slides [pdf]
at the tutorial homepage [link].
A keynote on "Learning Generalized
Transforamation-Equivariant
Representations" was also presented at IJCAI Tusion 2019.
- Our
paper "AVT: Unsupervised Learning of Transformation Equivariant
Representations by Autoencoding Variational Transformations" has been
accepted by ICCV 2019
[pdf].
In this work, we study the AutoEncoding Transformations (AET)
from an information-theoretic perspective, where we present a novel
view of point to generalize the Transformation-Equivariant
Representation.
- "Few-Shot Image Recognition
with Knowledge Transfer" was accepted by
ICCV 2019.
- Dr. Qi was elected into IEEE IVMSP
and MMSP
technical committees.
- Dr. Qi
is appointed as an Associate Editor for IEEE Transactions on Multimedia.
- Dr. Qi
is appointed as an Associate Editor for IEEE Transactions on Image
Processing.
- Our paper
"Large-scale Bisample Learning on ID Versus Spot Face Recognition" was
accepted by IJCV,
see preprint [pdf].
- Our paper "AET vs. AED: Unsupervised
Representation Learning by Auto-Encoding Transformations rather than
Data" was accepted by CVPR
2019, see preprint [pdf].
A novel unsupervised learning approach was presented to train
Transformation
Equivariant Representation (TER) that achieves the
state-of-the-art performance on ImageNet by the unsupervised AlexNet (53.2% of Top-1 accuracy) vs.
59.7% of Top-1 accuracy of fully supervised AlexNet.
- [Feburary 2019] Our paper "Task-Agnostic Meta-Learning for
Few-shot Learning" has been accepted by CVPR 2019. See our
preprint at arvix [pdf].
It presents a meta-learning regularization approach by encouraging
unbiased meta-training over training tasks so that the meta-model can
be better generalized to unseen tasks.
- Our paper "CapProNet: Deep Feature Learning
via Orthogonal Projections onto Capsule Subspaces" was
accepted by NIPS 2018.
We present a novel capsule projection architecture, setting up a new
state-of-the-art for the capsule nets in literature on CIFAR, SVHN and
ImageNet. The source code was released at our github homepage.
- Our
paper "Learning Compact
Features for Human Activity Recognition via
Probabilistic First-Take-All" has been accepted by IEEE
Transactions on
Pattern Analysis and Machine Intelligence (PAMI). The accepted
paper and source code will be released soon.
- We propose a Loss-Sensitive
GAN (LS-GAN),
and extend it to a generalized LS-GAN (GLS-GAN) in which
Wasserstein GAN is a special case.
We have proved both distributional consistency and generalizability of
the LS-GAN
model in a polynomial
sample complexity in terms of the model size and its Lipschitz
constants. See more
details in our paper [pdf], and
an incomplete map of GANs in our view [url].
- Our paper on "Generalized Loss-Sensitive
Adversarial Learning with Manifold Margins [pdf]"
was accepted by ECCV 2018,
where we present to train the Loss-Sensitive GAN by learning a
pull-back mapping from a sample
x to its projection z onto the manifold
generated by the GAN. We shall its applications into
generating interpolated edits between images as well as
semi-supervised learning with state-of-the-art performances. Source
codes are available at [github: torch,
blocks].
- Our paper on "A Principled Approach to Hard
Triplet Generation via Adversarial Nets " was accepted by ECCV 2018,
where we develop a principled way to generate harder yet more
informative triplets to train query and
re-identification models.
State-of-the-art performances were demonstrated on the re-id and
fine-grained classification problems.
- Microsoft CNTK is
officially supporting LS-GAN.
You can make a side-by-side comparison with the other GAN models at https://www.cntk.ai/pythondocs/CNTK_206C_WGAN_LSGAN.html.
- Dr. Qi is serving as a senior
TPC member for AAAI 2019.
- Our paper on "High sensitivity with tiny
candidates for Pulmonary Nodule Detection" was accepted by
MICCAI
2018.
- The paper "Global versus Localized
Generative Adversarial Nets" will
appear in CVPR 2018.
We present a new construction of Laplacian-Beltrami operator
to enable semi-supervised learning on manifolds without resorting to
Laplacian graphs
as an approximate. We also demonstrate the
state-of-the-art performance on image classiciation tasks. The
source codes are released ad available at [code 1:
generation, code 2:
semi-supervised learning].
- Our
paper "Interleaved Structured Sparse Convolutional Neural Networks"
will appear in CVPR 2018
to present a new compact CNN model.
- Dr. Qi is invited as an area
chair for ICPR 2018.
- Dr. Qi will serve as a Technical Program Co-chair for
ACM
Multimedia 2020 at Seattle.
- We
have a paper "Interleaved Group Group Convolutions for Deep Neural
Networks"
accepted by ICCV 2017,
where a super compact and fast deep
convolutional model was develop that can be deployed on mobile devices. Two
types of group convolutions, a primal group sparse convolution
and
a dual point-wise permutation convolution, are developed to make the
model more efficient. [pdf]
- We
released our sources for our ICML
2017 and KDD
2017 papers on
State-Frequency LSTM [github, pdf]
and stock price prediction [github, pdf].
- Congratulations to Hao and
Liheng on their ICML2017
and KDD2017
papers being accepted.
- Congratulations to Mr. Joey Velez-Ginorio,
an undergraduate researcher of our group, on being selected as
a Barry Goldwater
scholar. This is the most prestigious undergraduate
scholarship across the country established by the United States Congress
to support highly qualified college students to pursue
careers in STEM.
- Dr. Qi will serve as an Area Chair for ICCV 2017.
- Dr. Qi is serving as an Area Chair for ICME 2017.
- A paper on learning compact
features that encode dynamics of video and sensor data has been
accepted by ACM TOMM.
- A paper on jointly learning
label classification and tag recommendation has been accepted by AAAI 2017.
- One paper developing an
efficient
ranking-based hashing algorithm has been accepted for the publication
in IEEE Transactions on
Pattern Analysis and Machine Intelligence. [pdf]
[code]
- One paper
"Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement"
has been accepted for publication in IEEE Transactions on Pattern
Analysis and Machine Intelligence.
- One
paper has been accepted by
IEEE Transactions on Pattern Analysis and
Machine Intelligence for classifying images of rarely seen
or unseen
classes with the help of text labels. [pdf][code]
- Two research papers,
including an oral presentation "Hierarchically
Gated Deep Networks for Segmantic Segmentation", have been
accepted for presentation at CVPR 2016, Las Vegas, Nevada. [pdf]
- One
paper has been accepted for plenary presentation at SIGKDD 2016. A fast
detection method for brain disorder based on fMRI was presented. It is
one order of magnitude faster than state-of-the-art methods with even
better accuracy.
- Dr. Qi is serving as an Area Chair for ACM Multimedia 2016.
- Dr. Qi will serve as a Senior Program Committee Member
for KDD 2016.
- International Conference on
MultiMedia Modeling will go to Miami FL, 4-6 January 2016 [link].
Dr. Qi will serve as program co-chair.
- CFP: Special Issue on "Big
Media Data: Understanding, Search, and Mining", in IEEE Transactions on
Big Data [pdf]
(deadline: July 1, 2015).
- CFP: "Deep Learning for
Multimedia Computing", in IEEE Transactions on Multimedia [pdf]
(The new deadline is April 20, 2015).
- Our full research paper
"Weekly-Shared Deep Transfer Networks for
Heterogeneous-Domain Knowledge Propagation" has been selected as one
of the four best paper
candidates to be presented at ACM MM 2015.
- One
paper is accepted by ICCV
2015. We developed a novel deep LSTM
model for analyzing human actions, where we explore the differential
structure over memory states to study the dynamic saliency.
- One
full research paper "Weakly-Shared Deep Transfer Networks for
Heterogeneous-Domain Knowledge Propagation" is accepted by ACM MM 2015.
We developed a
novel cross-modal label transfer deep network, showing competitive
performance on predicting image labels derived from the
alignment with text documents.
- Dr. Qi is serving as an Area Chair for ACM Multimedia 2015.
- Three
papers are accepted by KDD
2015. Congratulations to Vivek, Rohit, Shiyu and Wei!
In these papers, (1) we developed deep networks to reveal the
brain neural connectivity by aligning time-series
activiations by
neuron fires that are marked by calcium influx; (2) we
invented a new paradigm
of dynamic model to select and predict sensors and their readings over
time, as compared with the conventional static strategy; and (3) we
developed
heterogeneous networks to predict the cross-modal relevance between
multimodal data.
- One
paper "Temporal-Order Preserving Dynamic Quantization for Human Action
Recognition from Multimodal Sensor Streams" accepted by ICMR 2015.
On
UTKinect-Action dataset, our best approach has achieved 100% accuracy.
Congralulations
to Jun and Kai!
- One paper "Sparse Composite
Quantization" has been accepted by CVPR
2015. Congralutions to Ting!