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Abstract

In this paper, we present a novel regularization
mechanism for training deep networks by minimizing
the Worse-Case Perturbation (WCP). It is based on the
idea that a robust model is least likely to be affect-
ed by small perturbations, such that its output deci-
sions should be as stable as possible on both labeled
and unlabeled examples. We will consider two forms
of WCP regularizations – additive and DropConnec-
t perturbations, which impose additive noises on net-
work weights, and make structural changes by drop-
ping the network connections, respectively. We will
show that the worse cases of both perturbations can
be derived by solving respective optimization problem-
s with spectral methods. The WCP can be minimized
on both labeled and unlabeled data so that network-
s can be trained in a semi-supervised fashion. This
leads to a novel paradigm of semi-supervised classi-
fiers by stabilizing the predicted outputs in presence of
the worse-case perturbations imposed on the network
weights and structures. We conduct experiments to
demonstrate the proposed method outperforms many
state-of-the-art models in literature. The source code
will be released after the paper is accepted for publi-
cation.

1. Introduction

When training a predictive model fθ with parame-
ters θ, the idea behind many “denoising” approaches in
literature [30, 9] is to train a robust model that would
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not change its predictions abruptly in presence of mod-
el noises. In this paper, we will show that the idea
can be further elaborated to train a regularized model
by minimizing the change of model predictions in the
worst case when a given magnitude of perturbations is
presented.

For example, for a sigmoid classifier, it would be
intuitive to learn a preferred linear boundary that has
the largest margin to separate datapoints of different
classes. This large margin principle is well connected
with the idea of minimizing the impact of worst-case
model perturbation, since a maximum-margin classi-
fier [2, 3, 21, 18] is least likely to change its predic-
tions when it is maximally perturbed. We refer the
readers to the deferred example shown in Figure 1 that
will be discussed in Section 4.1 in the context of addi-
tive perturbation. Although it is a simple example, it
reveals the intrinsic relation between the classic large
margin principle and the worst-case perturbation reg-
ularization, while the latter can be applied to a general
nonlinear model and unsupervised data.

Formally, in this paper, we present a novel paradig-
m of regularized deep networks by minimizing the
impact of Worse-Case Perturbations (WCP) to train
robust models. We will present two forms of WCP
mechanisms – the Additive Perturbation with additive
noises on model weights, and the DropConnect Per-
turbation by making structural changes by dropping
network connections. We will show how to tractably
derive the worse-case perturbations that maximally
change the network predictions, and integrate them
to regularize the training of the network weights and
structures. We will apply the proposed WCP regular-
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izer to explore both labeled and unlabeled data in a
semi-supervised fashion, yielding the classifiers that
have stable predictions against worse perturbations.

The remainder of the paper is organized as follows.
We discuss the relation with the existing works in Sec-
tion 2. In Section 3, we present the proposed formula-
tion of the WCP regularization, followed by the addi-
tive perturbation and the DropConnect perturbation re-
spectively in Section 4 and Section 5. We show how to
integrate both perturbations to train a robust network in
Section 6. We demonstrate the superior performances
of the WCP-regularized model through experiments in
Section 7, and conclude the paper in Section 8.

2. Related Works

There exist several works in literature that regular-
ize the model training by randomly corrupting net-
works and/or data. Among them is the seminal dropout
regularization that randomly removes neurons when
training networks [8]. Along this line, the DropCon-
nect [31] is a natural extension by randomly drop-
ping neural connections during the training. Essential-
ly, the removal of neurons and their connections can
be seen as forming an ensemble of network architec-
tures in the training process, yielding a robust network
by “averaging” over the resultant ensemble. In par-
allel, some other models seek to improve the consis-
tency of predicted outputs over the perturbed data to
the train semi-supervised models. These include the
GAN-based methods that train a multi-class discrimi-
nator to distinguish fake samples from the real classes
[16], or learn localized generators [23] to investigate
the output consistency along the manifold.

This idea has been further extended to train semi-
supervised classifiers [36, 14, 1, 33, 26, 27, 25, 20, 28,
6, 17, 19] by temporally fusing networks through the
training process. For example, [9] propose to predict
target values of unlabeled examples by taking an ex-
ponential moving average of the predictions from s-
tochastic networks trained with random dropouts and
data augmentations over recent iterations. [29] further
extend the idea of the temporal ensembling to max-
imize the consistency of predictions between mean
teachers and the running student networks on both
labeled and unlabeled data. [34] combined multiple
transformations to explore the self-supervised train-
ing of semi-supervised classifiers in an ensemble in an

auto-encoding transformation fashion [35, 22, 15, 32]
.

Instead of generating an ensemble of randomly cor-
rupted networks, the WCP aims to find and enhance
the most vulnerable part of a network by making the
weights and connections most resilient against the
worst-case perturbations. In contrast to the WCP that
directly imposes perturbations on network weights and
structures, [10] explore the vulnerability of a network
through virtual adversarial examples that would max-
imally alter the network predictions. The WCP is or-
thogonal to the approach that uses the virtual adver-
sarial examples to train a robust classifier [10]. In con-
trast, the WCP seeks to reveal and enhance the most
vulnerable part of the model in terms of both additive
and dropconnect noises.

As aforementioned, the WCP is also well connected
with the idea of training robust models with the large
margin principle [2, 3, 4, 18] that has gained success
before the deep learning era. Thus, in this paper, we
also aim to close the research gap by bringing the prin-
ciple of classic regularization methods to train more
competitive deep networks.

3. The Formulation

In this section, we present the proposed Worst-Case
Perturbations (WCP) for regularizing deep networks,
and show its application to semi-supervised learning
by exploring unlabeled data to train networks.

Formally, consider a deep network fθ(x) that takes
x sampled from a data distribution D as input and has
θ ∈ Θ as its weights. Suppose there is a perturbation
function g applied to the model weights (additive per-
turbation) and structures (dropconnect perturbation),
resulting in a perturbed version of the model fg(θ)(x).

We have some constraints G on a perturbation func-
tion such that the it would not arbitrarily perturb the
model. For example, for an additive perturbation,
we can restrict the largest norm on the additive noise
added to the model; for a dropconnect perturbation,
the maximum number of dropped connections can be
set. We will discuss these constraints later in detail.

Then the worse-case perturbations subject to the
constraints can be solved by

Ωθ = max
g∈G

E
x∼D

`
(
fθ(x), fg(θ)(x)

)
(1)



Figure 1: (a) A toy example of a sigmoid unit for four datapoints; (b) the relation between φ and the corresponding
WCP value. From the “teeth” curve, the minimum WCP regularizer occurs at φ = 0 (similary at φ = ±π) with
the corresponding boundary x1 = 0. Two local minima of the WCP regularizer occur at ±π

2 , corresponding to
x2 = 0. The result is obtained with ε = 10−3.

where `(·, ·) is a loss function measuring the difference
between the outputs of the original and perturbed func-
tions (e.g., squared `2 loss and Kullback-Leibler diver-
gence), and we use the expected change of the network
outputs fθ over the data distributionD to quantify how
much the model has been perturbed.

Here we assume the loss function ` has the follow-
ing properties:

• `(y, z) = 0 when y = z;

• `(y, z) ≥ 0, i.e., its minimal value is zero;

• `(y, z) is at least twice differentiable.

We wish to minimize the impact of worse-case per-
turbations as a way to regularize the training of deep
networks. In other words, this encourages the model to
avoid putting its decision boundary through the dense
areas of datapoints such that the perturbations are least
likely to incur a large change to the outputs of fθ.

Thus, the worse-case perturbation Ωθ can serve as a
regularizer on the model fθ when it is trained by mini-
mizing the conventional training errors Eθ(x,y) (e.g.,
cross-entropy loss) on training examples (x,y) ∼ T .
Therefore, we have the following objective to train the
deep network,

min
θ

E
(x,y)∼T

Eθ(x,y) + γΩθ

where γ is a balancing coefficient trading off between
the training errors and the worse-case perturbation reg-
ularizer.

For Ωθ, it can involve both labeled and unlabeled
data, and thus it could explore unlabeled examples in
a semi-supervised fashion to train the network.

In the next two sections, we will discuss two forms
of perturbations for the WCP model.

4. Additive Perturbation

In this section, we will discuss the first form of per-
turbation – the additive perturbation.

It imposes an additive noise on the model parame-
ters θ, that is g(θ) = θ + δ, along with a constraint on
the norm of the noise G = {δ|‖δ‖ ≤ ε}. In this case,
the WCP regularizer (1) becomes

Ωadd
θ = max

‖δ‖≤ε
E

x∼D
` (fθ(x), fθ+δ(x)) .

Taking the Taylor expansion of ` (fθ(x), fθ+δ(x))
at δ = 0, we have an approximate

E
x∼D

` (fθ(x), fθ+δ(x)) ≈ E
x∼D

1

2
δTSθδ (2)

where

Sθ , E
x∼D
∇2` (fθ(x), fθ+δ(x)) |δ=0

is the second-order Hessian matrix at δ = 0.



We use the following two facts in the above expan-
sion.

• ` (fθ(x), fθ+δ(x)) becomes 0 at δ = 0, since
fθ(x) and fθ+δ(x) are equal for δ = 0;

• ` (fθ(x), fθ+δ(x)) attains its minimal value of 0
at δ = 0, and thus the first-order term vanishes as
the gradient becomes zero at this stationary point.

Then, the WCP regularizer can be solved by

max
‖δ‖≤ε

δTSθδ,

where the optimal δ∗ attains at εuθ with uθ being the
singular vector corresponding to the largest singular
value of Sθ. By plugging δ∗ into Ωθ, we have the fol-
lowing regularizer of additive perturbation

Ωadd
θ = E

x∼D
` (fθ(x), fθ+εuθ(x)) (3)

It is worth noting that the singular vector uθ can
be computed efficiently by power iteration and the fi-
nite difference method [5]. In practice, we found even
a single-step power iteration is enough in our exper-
iments. This boils down to approximate uθ by eval-
uating the gradient of ` (fθ(x), fθ+δ(x)) near δ = 0.
This could significantly reduce the computational cost
compared with naively solving a Singular Value De-
composition problem.

4.1. A Sigmoid Example

Here, we use a toy example to show the insight into
how the WCP regularizes the training of deep network-
s.

Consider a sigmoid unit

fw(x) =
1

1 + exp(−wTx)
∈ [0, 1],

which is the most basic building blocks in neural net-
works, with an input vector x = [x1, x2]T . In Fig-
ure 1(a), we consider four samples on the 2-D input
space, and focus on a family of unit-norm parameter-
s w , [cosφ, sinφ]T with φ as the angle between w
and the x1-axis. It is not hard to see that the boundary
fw(x) = 1

2 is given by wTx = 0.
Without any data labels, it is intuitive to see that the

most preferred fw is given by φ = 0, i.e., the bound-
ary x1 = 0, as it has the largest margin to separate

datapoints. In other words, this boundary resides in a
lowest-density area far apart from any datapoints.

This intuitive result exactly coincides with the one
derived by minimizing the WCP regularizer (3) with a
l2 distance for the loss function `. To show it, we plot
the relation between the angle φ and the corresponding
value of the WCP regularizer in Figure 1(b). The result
shows the minimum WCP occurs when φ = 0, which
is consistent with our intuition.

We also observe there are two local minima of the
WCP regularizer at ±π

2 , corresponding to the bound-
ary x2 = 0. This is not surprising as they have a locally
large margin separating datapoints.

This example reveals an interesting relation be-
tween the minimizing the WCP with the additive per-
turbation and the large margin principle in the context
of a sigmoid unit with linear boundary.

5. DropConnect Perturbation

The second perturbation under consideration is the
DropConnect perturbation, which would change the
network structure by dropping its connections. Specif-
ically, for every parameter θi in θ, we define an indi-
cator variable αi in the vector α denoting if the corre-
sponding connection should be dropped from the net-
work by setting the weight to zero: αi = 1 denotes a
dropped connection while αi = 0 indicates an intact
one.

In this way, the perturbation function can be written
as

g(θ) = (1− α) ◦ θ
with element-wise product ◦, and the constraint on α
is

Gα = {α|α ∈ {0, 1}N , ‖α‖0 = bσNc},
where ‖ · ‖0 is the `0 norm, N is the number of net-
work weights in θ and σ ∈ [0, 1] is a preset dropcon-
nect ratio, i.e., the portion of weight connections to be
dropped.

By applying Taylor expansion again, we have

α∗ = arg max
α∈Gα

E
x∼D

`
(
fθ(x), f(1−α)◦θ(x)

)
≈ arg max

α∈Gα

1

2
αTQα

(4)

where

Q = E
x∼D
∇2`

(
fθ(x), f(1−α)◦θ(x)

)
|α=0



is the Hessian matrix of the loss ` at α = 0, which is a
N ×N semi-positive definite matrix.

It is obvious that (4) is a typical Binary Quadratic
Programming (BQP) problem, which is NP-hard but
admits an approximate solution to α∗. For example,
it can be solved by spectral method or by convert-
ing into a semidefinite programming problem. Here,
we choose an alternative spectral subgradient method
[12]. While (4) contains a constraint on the number of
nonzero elements in α, we will show how to solve a
constrained BQP by the spectral subgradient method.

Once such α∗ is solved, we can obtain the following
WCP regularizer for the DropConnect perturbation,

Ωdrop
θ = E

x∼D
`(fθ(x), f(1−α∗)◦θ(x))

By the convention, we apply the dropconnect per-
turbation layer-wise in a deep network instead of ap-
plying it to an entire network as a whole, i.e., the set
of dropped weight connections at various layers are
sought individually. This can make the dropconnect
WCP more computationally efficient as well as pre-
vent too many connections from being dropped at few
layers.

5.1. Spectral Gradient for Constrained BQP

In this section, we will present an approximate solu-
tion to the BQP problem in (4) with a linear constraint.
First, let us define βi = 2αi − 1 for i = 1, · · · , N ,
which converts {0, 1}-constraint on αi into {±1}-
constraint on βi.

Putting all βi together, we define an augmented
(N + 1)-dim vector β̄ = [βi]

N+1
i=1 by introducing an

additional variable βN+1 = 1. Then the constraint Gα
on α becomes

Gβ̄ = {β̄|β̄ ∈ {±1}N+1, eT β̄ = c}, 1

where c = 2bσNc−N+1, and e ∈ RN+1 is an all-one
vector. Then the BQP can be reformulated in terms of
β̄, where the binary constraint on β̄i can be rewritten
as a quadratic constraint β̄2

i = 1.
To solve the constrained BQP, we can introduce a

Lagrange multiplier µi for each binary constraint β̄2
i =

1, and µ0 for the linear constraint eT β̄ = c.

1Indeed, we instead impose an equivalent quadratic constraint
eT β̄βN+1 = c since βN+1 = 1.

Then, the dual problem for the BQP can be written
as

min
µ,µ0

h(µ, µ0) (5)

with

h(µ, µ0)

= max
‖β̄‖2=N+1

β̄T [L+ diag(µ)]β̄ − eTµ− cµ0

= (N + 1)λmax(L+ diag(µ))− eTµ− cµ0

(6)

where

L =

(
Q Qe+ 1

2µ0e
eTQ+ 1

2µ0e
T 0

)
∈ RN+1×N+1,

and λmax and umax denote the largest eigenvalue of
L+ diag(µ) and its corresponding eigenvector of unit
norm. Like in the additive perturbation, umax can be
efficiently approximated by using a single-step pow-
er iteration without naively solving the eigenvalue de-
composition problem.

In Eq. (6), the maximum β̄∗ is attained at

β̄∗ =
√
N + 1umax (7)

The dual problem (5) can be solved by the gradient
descent method over iterations. It is not hard [13] to
show its gradient wrt µ and µ0 is

∇µh = (N + 1)u2
max − e

and

∂h

∂µ0
=

1

2
(N + 1)uTmax

(
0 e
e 0

)
umax − c

where u2
max denotes an element-wise square of umax.

During training the WCP model with the dropcon-
nect perturbation, over each mini-batch, we compute
the above gradient to make an one-step update of the
Lagrange multipliers µ and µ0 along the descending
direction, before the maximum β̄∗ is taken with the
updated multipliers. Finally, note that both ±β̄∗ are
optimal for (6) and we should choose the one closer to
βN+1 = 1 as required.



Table 1: Error rate on CIFAR-10 over ten runs with different number of labeled examples. All methods use the
same 13-layer architecture.

1000 labels 2000 labels 4000 labels

GAN [24] 18.63± 2.32
Π model [9] 12.36± 0.31
Temporal Ensembling [9] 12.16± 0.31
VAT [10] 11.36
VAT+EntMin [10] 10.55
Supervised-only [29] 46.43±1.21 33.94±0.73 20.66±0.57
Π model [29] 27.36±1.20 18.02±0.60 13.20±0.27
Mean Teacher [29] 21.55±1.48 15.73±0.31 12.31±0.28

The proposed WCP 17.62±1.52 11.93±0.39 9.72±0.31

Table 2: Error rate on SVHN over ten runs with different number of labeled examples. All methods use the same
13-layer architecture.

250 labels 500 labels 1000 labels

GAN [24] 18.44±4.8 8.11± 11.3
Π model [9] 6.65±0.53 4.82± 0.17
Temporal Ensembling [9] 5.12±0.13 4.42± 0.16

VAT [10] 5.42
VAT+EntMin [10] 3.86
Supervised-only [29] 27.77±3.18 16.88±1.30 12.32±0.95
Π model [29] 9.69±0.92 6.83±0.66 4.95±0.26
Mean Teacher [29] 4.35±0.50 4.18±0.27 3.95±0.19

The proposed WCP 4.29±0.10 3.75±0.11 3.58±0.186

6. Integrating Additive and DropConnect Per-
turbations

Additive and DropConnect perturbations could be
integrated to train a semi-supervised classifier jointly.
Consider a model with network weights θ. After an op-
timal additive perturbation δ∗ and a dropconnect per-
turbation α∗ are sought, the perturbed model weights
g(θ) become (1− α∗) ◦ (θ + δ∗).

Then the WCP regularizer integrating both worst-
case perturbations can be written as

Ωθ = E
x∼D

`
(
fθ(x), f(1−α∗)◦(θ+δ∗)(x)

)
over both labeled and unlabeled data. This could
be combined with the conventional classification loss
(e.g., cross-entropy loss) to train a semi-supervised
model. In each minibatch, both perturbations δ∗ and

α∗ are updated iteratively to find the most vulnerable
part of model weights and improve their robustness by
minimizing the resultant regularizer.

In experiments, we found the best performances can
be obtained by jointly imposing additive perturbation-
s on the parameters of an entire model, while adding
dropconnect perturbations only to some layers sepa-
rately. We argue that the dropconnect perturbations
could not be jointly applied to all the layers of a net-
work because they could block the network connectiv-
ity by over-dropping the connections of some layers.

7. Experiments

In this section, we will conduct experiments to e-
valuate the performance of the semi-supervised classi-
fiers based on the proposed WCP regularizer on both



Table 3: Ablation study of the impact of different model components. The error rate is reported on the test set of
CIFAR-10 with 4, 000 labels.

Additive Perturbation X X X
DropConnect Perturbation X X

Entropy Minimization (EntMin) X

Error rate 10.15 9.85 9.51

Table 5: Error rate of the WCP with different dropconnect ratios on CIFAR-10 with 4, 000 labels, with the other
hyperparameters fixed.

Dropconnect ratio 0.1 0.2 0.3 0.4 0.5 0.7

Error rate 9.81 9.51 9.66 9.78 9.92 10.26

Table 4: Error rate of worst-case dropconnect pertur-
bations on different layers of each convolutional block
on CIFAR-10 with 4, 000 labels.

DropConnect Error rate

1st layers 9.77
2nd layers 9.51
3rd layers 10.08

CIFAR-10 and SVHN datasets.

7.1. Architecture and Implementation Details

For the sake of fair comparison, we adopt the same
13-layer architecture that has been used in the existing
state-of-the-art models [9, 29, 10]. It consists of three
blocks, and each block has three convolutional layers,
followed by a 2 × 2 maxpooling and a dropout layer.
The output feature map is globally averaged to a 128-
dimensional vector after the third block, and a fully-
connected layer follows to map the resultant vector to
ten output classes with a softmax operation.

The additive perturbation is added to the network
from the input layer of samples through the whole net-
work with a magnitude ε of 8.0 and 3.5 on CIFAR-10
[7] and SVHN [11] datasets, respectively. The drop-
connect perturbation is applied to the second layer of
each convolutional block with a dropconnect ratio of
0.2 on both datasets. The cross-entropy loss and the
WCP regularizer is combined with a fixed balancing
coefficient γ = 1.0. The Kullback-Leibler divergence

is adopted as the loss function ` in both perturbation-
s. To ensure a fair comparison with the state-of-the-art
virtual adversarial training model [10], Entropy Mini-
mization (EntMin) is also adopted. Adam optimizer is
used to train the network with an initial learning rate of
0.001 and β1 = 0.9. The network is trained for a total
of 1, 000 (5, 00) epochs on CIFAR-10 (SVHN). After
the first 800 (400) epochs, the learning rate is sched-
uled to linearly decay to zero while β1 being fixed to
0.5 on CIFAR-10 (SVHN). The hyperparameters are
chosen based on the performance on a validation set
with 20% labeled examples from the training set. Then
the network is retrained with the selected hyperparam-
eters on the whole training set, and the performance is
reported on a separate test set.

We adopt the standard way to augment input im-
ages in literature [9, 29, 10]. They include both hori-
zontal flips and random translations on CIFAR-10 im-
ages, with only random translations on the digits of the
SVHN dataset.

7.2. Results

Table 1 and 2 compare the error rates of differ-
ent methods on CIFAR-10 and SVHN dataset, re-
spectively. Both the mean and deviation of the error
rates are reported over ten runs with varying num-
bers of labeled examples. The comparisons show
that the proposed WCP model outperforms the exist-
ing state-of-the-art semi-supervised models, including
Mean Teacher [29], Virtual Adversarial Training [10],
Temporal Ensembling [9], and Π model [29]. The re-



sults were achieved by integrating both additive and
dropconnect perturbations. The following ablation s-
tudy will analyze the effect of individual perturbations.

7.3. Ablation Study and Analysis

We conduct an ablation study of individual pertur-
bations to evaluate their impacts on the performance.
Table 3 reports the results on CIFAR-10 with 4, 000
labels. We evaluate on the impact of additive per-
turbation, and dropconnect perturbation, and entropy
minimization on the model performance. The result-
s show that all of them contribute to the reduction
in the error rates. We also note that even if the en-
tropy minimization were removed, the WCP would
still outperform the compared algorithms including
VAT and Mean Teacher. With the entropy minimiza-
tion added, the WCP also outperforms the best per-
forming VAT+EntMin that uses the entropy minimiza-
tion as well.

Moreover, we evaluate the impact of where to im-
pose the dropconnect perturbation in each convolu-
tional block on the performance of the WCP mod-
el. Table 4 compares the error rates when the drop-
connect perturbation is applied to different layers of
each block. It shows that the smallest error rate is
achieved when the dropconnect perturbation is added
to the middle layer of each block.

Finally, Table 5 shows the results when different ra-
tios are used for the dropconnect perturbation. The
smallest error rate is achieved at σ = 0.2. Although
the error rate changes slightly with varying ratios, the
results show that the model performance is quite stable
without too large fluctuation.

8. Conclusion

In this paper, we present two forms of model pertur-
bations to train a robust classifier in a semi-supervised
fashion. It assumes that a robust model should make
stable predictions even if its weights and structures are
worst perturbed to a certain degree of magnitude. To
this end, the additive and dropconnect perturbations
are developed. Given a magnitude of additive noise
and dropconnect ratio, the worst-case perturbations are
derived and applied to the model. Then the network is
trained by minimizing the change of model prediction-
s subject to these perturbations. Experiments demon-
strate the proposed WCP-regularized classifier outper-

forms the state-of-the-art semi-supervised methods on
both CIFAR-10 and SVHN datasets.
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