
Rotation Equivariant Graph Convolutional Network for Spherical Image
Classification

Qin Yang1, Chenglin Li1, Wenrui Dai1, Junni Zou1, GuoJun Qi2, Hongkai Xiong1

1Shanghai Jiao Tong University, 2Futurewei Technologies
{yangqin, lcl1985, daiwenrui, zoujunni, xionghongkai}@sjtu.edu.cn, guojunq@gmail.com

Abstract

Convolutional neural networks (CNNs) designed for
low-dimensional regular grids will unfortunately lead to
non-optimal solutions for analyzing spherical images, due
to their different geometrical properties from planar im-
ages. In this paper, we generalize the grid-based CNNs to
a non-Euclidean space by taking into account the geome-
try of spherical surfaces and propose a Spherical Graph
Convolutional Network (SGCN) to encode rotation equiv-
ariant representations. Specifically, we propose a spherical
graph construction criterion showing that a graph needs
to be regular by evenly covering the spherical surfaces in
order to design a rotation equivariant graph convolutional
layer. For the practical case where the perfectly regu-
lar graph does not exist, we design two quantitative mea-
sures to evaluate the degree of irregularity for a spherical
graph. The Geodesic ICOsahedral Pixelation (GICOPix)
is adopted to construct spherical graphs with the minimum
degree of irregularity compared to the current popular pixe-
lation schemes. In addition, we design a hierarchical pool-
ing layer to keep the rotation-equivariance, followed by a
transition layer to enforce the invariance to the rotations
for spherical image classification. We evaluate the pro-
posed graph convolutional layers with different pixelations
schemes in terms of equivariance errors. We also assess the
effectiveness of the proposed SGCN1 in fulfilling rotation-
invariance by the invariance error of the transition layers
and recognizing the spherical images and 3D objects.

1. Introduction

Omnidirectional cameras generate spherical images with
360-degree view of the scenes that enable an immersive
experience for users by freely adjusting their viewing ori-
entations. Recently, omnidirectional cameras have become

1Code is aviable at https://github.com/QinYang12/SGCN.
This work was supported in part by the NSFC under Grants 61931023,
61871267, 61972256, 61720106001, 61831018, and 91838303.

popular in virtual reality (VR) and augmented reality (AR)
systems for applications ranging from robots [23, 27] to au-
tonomous cars [15, 16], which results in an increasing de-
mand for the analysis of spherical images. Convolutional
neural networks (CNNs) have achieved significant improve-
ment in analysis tasks related to planar images, e.g., image
recognition [10], object detection [8], and image segmenta-
tion [9]. However, it is still challenging to generalize CNNs
to analyzing spherical images defined on the non-Euclidean
spheres, as distortions may be incurred when spherical im-
ages are projected onto a flat Euclidean surface to accom-
modate the grid-based architectures in CNNs [3].

CNNs commonly adapt to the non-Euclidean spherical
images in two different ways. The first approach projects
the spherical images into the planar format that can be
processed directly by CNNs. Various projection methods
have been studied, including the equirectangular projection
(ERP) and the cube map projection [24], which lead to the
inevitable projection distortions. For ERP, filter kernels are
further designed for CNNs to compensate for the projec-
tion distortion [5, 26, 32]. [26] proposed to learn different
kernels with variable size for each row in the projected im-
ages, however, the model size increases dramatically with
the growth of image resolution. In [5, 32], the sampling
location of filter kernel is changed to adapt to the distor-
tion level. Without the guidance of rotation-equivariance,
although model parameters could be reduced by sharing the
kernels across all pixels, the model performance declines
inevitably.

The other approaches [3, 7] extend CNNs to non-
Euclidean domains to avoid the projection distortions. Al-
though CNNs have strong capability to exploit the local
translation equivariance and some works seek to capture
various transformation equivariant representations of regu-
lar 2D images [20, 21, 30], they do not adapt to the 3D rota-
tion of spherical images properly. Therefore, it is important
to explore rotation-equivariance in spherical image analy-
sis. [3] and [7] develop spherical CNNs by introducing the
rotation-equivariant spherical cross-correlation in the spec-
tral domain. However, Fourier transform is required for the
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spherical correlation in each step, leading to high computa-
tional cost and significant memory overhead. [17] proposes
a graph convolutional neural network for cosmological data
that often come as spherical maps tailored by the Hierarchi-
cal Equal Area isoLatitude Pixelation (HEALPix). How-
ever, the irregular feature map in the HEALPix scheme sitll
does not maintain the rotation-equivariance.

As an almost uniform discretization of the sphere, icosa-
hedron [1] has been adopted to represent the spherical do-
main [4, 11, 14, 29]. In [4, 29], the spherical signal is
projected on the icosahedron mesh with 20 basic planar re-
gions, which is further analyzed with the gauge-equivariant
and orientation-aware CNNs. The distortion is however still
large, and discontinuities between the basic planar regions
need to be handled by carefully designed schemes such as
the gauge transformation on the features [4] and padding
[29]. Based on geodesic icosahedron with smaller distor-
tion, [14] designs the convolution and pooling kernels of
CNNs and [11] presents parameterized differential opera-
tors on the unstructured grids. Although the convolution
kernel is flipped by 180 degrees when applied to the next
adjacent triangle [14], the convolution kernels in [11, 14]
are still anisotropy and thus not rotation equivariant.

In this paper, we propose a Spherical Graph Convolu-
tional Network (SGCN) to encode rotation-equivariance for
spherical image analysis. Specially, we develop a graph
convolutional layer through exploring the isometric trans-
formation equivariance of the graph Chebyshev polynomial
filters which is isotropy, a hierarchical pooling layer to ex-
ploit the multi-scale resolutions of the spherical images and
keep the rotation-equivariance, and a transition layer to cal-
culate the rotation-invariant statistics across multiple fea-
ture maps of the hierarchical pooling layer.

To enforce rotation-equivariance in the proposed poly-
nomial graph convolutional layer, we propose a spherical
graph construction criterion based on regularity, and show
that given the number of vertices, a regular graph (i.e., ver-
tices distribute uniformly on the surface of the spherical im-
age) is equivariant to more rotations than an irregular one.
For the practical case where the perfectly regular graph does
not exist, we design two quantitative measures to evaluate
the degree of irregularity for a spherical graph, and empir-
ically show that a graph construction scheme with a lower
degree of irregularity will result in smaller equivariance er-
rors of the graph convolutional layers. Further the Geodesic
ICOsahedral Pixelation (GICOPix) scheme is adopted to
construct the spherical graph, which empirically demon-
strates to achieve a lower degree of irregularity with the
least weight variance for edges and least degree variance
for vertices.

To demonstrate the effectiveness of the proposed crite-
rion, we evaluate the equivariance errors of the graph convo-
lutional layers by different graph construction schemes. We

also assess the invariance errors of the proposed transition
layers for the ability of capturing rotation-invariance and
recognizing the spherical images. We further employ the
proposed SGCN in spherical image classification, demon-
strating that SGCN outperforms the state-of-the-art models
on the Spherical MNIST (S-MNIST), Spherical CIFAR-10
(S-CIFAR-10) and achieve comparable performance to the
3D models on the ModelNet40 datasets in terms of rotation
invariance classification accuracy.

2. Preliminaries
We represent a spherical image as an undirected and con-

nected graph G = (V, E , A), where V is a set of |V| = N
vertices, E is a set of edges, and A is a weighted adja-
cency matrix with each element aij = w(vi, vj) represent-
ing the connection weight between two vertices vi and vj .
The weight aij is zero if vertices vi and vj are not con-
nected. The normalized graph Laplacian is then defined as
L = I −D−1/2AD−1/2, where D ∈ RN×N is a diagonal
degree matrix with Dii =

∑N
j=1 aij , and I is the identity

matrix.
By recursively computing a Chebyshev polynomial to

approximate the convolution kernel [6], the spectral con-
volution with a spherical signal x can be written as

y =

K−1∑
k=0

θkTk(L̃)x, (1)

where L̃ = 2L/λmax − I , λmax is the largest eigenvalue
of L, and θk denotes the Chebyshev polynomial coefficient
which is a learnable parameter. Consequently, the Cheby-
shev polynomial Tk(L̃) ∈ RN×N can be recursively com-
puted through Tk(L̃) = 2L̃Tk−1(L̃)−Tk−2(L̃) with T0 = I
and T1 = L̃. The spectral convolution with a K-th order
polynomial is K-localized, i.e., the response of a vertex to
the polynomial filter only depends on all the vertex values
and edge weights on a path of length k < K.

It has been shown that a polynomial filter is equivariant
to graph isometric transformations [13]. In the following,
we give the definition of the graph isometric transformation
and the graph isometric transformation equivariance.

Definition 1. Graph isometric transformation [13]. A
graph isometric transformation g is a bijective mapping g :
V → V that preserves the distance between two adjacent
vertices on the graph. The corresponding transformation
operator Lg makes a permutation of signal x by preserving
their neighbourhoods. It can be formally depicted as

∀vk ∈ V,∃!vj ∈ V : [Lgx](vk) = x(vj), (2)

where Lgx is the transformed signal of x, and ∃! indicates
that there exists and only exists a vertex vj corresponding
to vk.
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Figure 1. The proposed SGCN architecture with a two-level graph construction, which comprises two stacks of graph convolutional layer
(GConv) and hierarchical pooling layer (HPool) followed by a transition layer (Tran) and a fully-connected layer (FC). The input spherical
image is represented as a level-2 graph G∗

2 based on GICOPix to achieve the rotation-equivariance. [µ0, σ0, ..., µK , σK ] is the multi-scale
statistics across the feature maps. The output is the distribution over the classes of the datasets.

Definition 2. Graph isometric transformation equiv-
ariance. A graph convolutional layer is equivariant to a
graph isometric transformation g, if transforming the in-
put signal by the graph isometric transformation operator
Lg and then feeding it through the graph convolution layer
results in the same response as feeding the original signal
through the graph convolutional layer followed by a corre-
sponding transformation of the resultant feature maps, i.e.,

[Φ(Lgx)](v) = [Lg(Φ(x))](v), (3)

where Φ represents the graph convolutional layer, and x is
the input spherical signal.

We consider a unit sphere with the radius r set to 1 in this
paper. Any point v on the sphere is then uniquely defined
by its longitude θ and latitude φ, with −π ≤ θ ≤ π and
−π2 ≤ φ ≤

π
2 .

Definition 3. 3D rotation group. The spherical 3D ro-
tation group is denoted by SO(3), which is continuous. A
rotation R ∈ SO(3) is a rigid transformation preserving
the Euclidean distance and orientation, which can be repre-
sented by a 3× 3 matrix.

Since a vertex v on the rotated graph corresponds to the
vertex R−1v on the original graph, we have

[LRx](v) = x(R−1v), (4)

where LR denotes the rotation transformation correspond-
ing toR. In this paper, we will consider a rotation subgroup
R of SO(3) with a finite number of elements. If a graph
convolution layer is equivariant to all the rotations R ∈ R,
i.e., [Φ(LRx)](v) = [LRΦ(x)](v), it is then equivariant to
the rotation groupR.

3. Rotation-Equivariant Spherical GCN

Fig. 1 depicts the proposed Spherical Graph Convolu-
tional Network (SGCN) that encodes the graph rotation-
equivariance for spherical image classification.

3.1. Regularity Constrained Graph Construction

As proved in [13], the polynomial filter in a graph con-
volution layer is equivariant to the graph isometric transfor-
mation. Therefore, the critical criterion here is to construct
the graph with a rotation group that contains the largest pos-
sible number of graph isometric transformations. In the fol-
lowing, we show from two simple examples that given the
number of vertices, such a graph can be constructed by en-
suring its regularity.

Definition 4. Graph regularity. A spherical graph is
regular if its vertices are distributed uniformly on the spheri-
cal surface. In detail, two principles are considered to define
graph regularity: i) the distance between any two adjacent
vertices is identical, and ii) all the vertices share the same
number of neighbors.

Example 1: Regular graph with six vertices. In
Fig. 2(a), we illustrate an example of regular spherical graph
with 6 vertices, which is constructed based on a spherical
octahedron with a rotation group Ro of order 24. Each ro-
tation R in the octahedral rotation group Ro is an invert-
ible mapping of vertices in the three-dimensional Euclidean
space that preserves all the relevant structure of the spheri-
cal octahedron. For simplicity, we consider a 5-point im-
age pattern x, where a vertex vt0 is connected with ver-
tices vt1 ∼ vt4. After an exemplary rotation R ∈ Ro,
the image pattern x is transformed into xR = LRx. As
illustrated in Fig. 2(a), for all the vertices vr0 ∼ vr4 in
the rotated image xR, there exists and only exists a set
of vertices vt0 ∼ vt4 in the original image x satisfying
xR(vrn) = x(vtn),∀n = 0, 1, ..., 4. The illustrated rota-
tion R is therefore a graph isometric transformation. It can
be further verified that all the 24 rotations in the octahedral
rotation groupRo are graph isometric transformations.

Example 2: Irregular graph with six vertices. On
the contrary, if the graph is constructed irregularly, its ro-
tation group R′ will have fewer elements than the octa-
hedral rotation group Ro. According to the definition, an
irregular spherical graph may have different distances be-
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Figure 2. Regular and irregular spherical graphs with six vertices,
showing how graph regularity affects rotation-equivariance.

tween adjacent vertices or different number of neighbors
for the vertices. In Fig. 2(b), we take an irregular graph
with different distances between adjacent vertices for ex-
ample. Given an arbitrary vertex v′r0 in the rotated image
x′R, there should be a vertex v′t0 in the original image x′

that satisfies x′R(v′r0) = x′(v′t0). Then, since the distance
between two adjacent vertices differs from each other, for
the neighbor vertices v′r1 ∼ v′r4 of the vertex v′r0 in xR,
there will no longer exist vertices v′t1 ∼ v′t4 in x′ satisfying
x′R(v′rn) = x′(v′tn),∀n = 1, 2, ..., 4.

The above two examples conclude that the vertices in a
regular graph can be rotated exactly to all the other vertices
to satisfy the definition of graph isometric transformation,
while the vertices in an irregular graph fail to do so. In
other words, for a given number of vertices, fewer graph
isometric transformations will be contained in the rotation
group of an irregular graph than a regular one. To accurately
represent a high-resolution spherical image, the number of
vertices N should be sufficiently large. A regular spherical
graph constructed from the spherical polyhedron with only
tens of vertices is far from enough. For a large number of
finite vertices (e.g., thousands of vertices), however, it is
impossible to construct a perfectly regular spherical graph.
Therefore we design two quantitative measures to evaluate
the degree of irregularity for a spherical graph: the variance
of edge weights V1 and the variance of neighbor numbers
V2, as

V1 =
1

E

E∑
i=1

(wi − µw)2, V2 =
1

N

N∑
i=1

[n(vi)− µn]2, (5)

where E = |E| is the number of edges, wi is the weight
for the i-th edge, µw is the mean value of the edge weights;
while N = |V| is the number of the vertices, n(vi) is the
number of neighbors for each vertex vi, and µn is the mean
value of neighbor numbers. According to the graph reg-
ularity definition, we have V1 = V2 = 0 if the graph is
regularly constructed. For irregular graphs, these two irreg-
ularity measures become larger than zero, and reveal the de-
gree of irregularity of the constructed graph, which in turn
determine the number of graph isometric transformations
contained in the rotation group. Therefore, smaller values
of V1 and Vs are preferred in the spherical graph construc-
tion to preserve a higher degree of rotation equivariance of

a graph convolutional layer.

3.2. Rotation-Equivariant Convolutional Layer

To reduce the degree of graph irregularity, we construct
in this paper the spherical graph based on the Geodesic
ICOsahedral Pixelation (GICOPix). Compared with other
popular pixelation schemes, such a graph is isotropic to a
large extent, where the cells are minimally distorted and al-
most equilateral. A fine-grained binary division can even
further increase the resolution of the resultant graph. As
will be seen in the experiments, GICOPix can outperform
the other pixelations schemes in terms of irregularity mea-
sures, equivariance errors and invariance errors.

With GICOPix, the graph is constructed by repeatedly
partitioning each equilateral triangle of a simpler geodesic
icosahedron into four equilateral triangles, and then project-
ing the new vertices onto the sphere. All the vertices of the
geodesic icosahedron become the graph vertices. Each ver-
tex has six adjacent vertices except the twelve vertices of
the original icosahedron that have five neighbors. We de-
fine the spherical graph constructed based on the original
icosahedron as G∗0 with N = 12 vertices, and denote l as
the subdivision level, i.e., the number of subdivision op-
eration on the original icosahedron. Then, the graph con-
structed based on the first level (l = 1) geodesic icosahe-
dron is G∗1 with N = 42 vertices. By induction, the graph
based on the l-th level geodesic icosahedron becomes G∗l
with N = 10 × 22l + 2 vertices. We show the constructed
graph of GICOPix at levels 0, 2, 4 in bottom row of Fig. 4.

The original icosahedron has a symmetry rotation group
called icosahedral rotation group Ri of order 60, which is
a subgroup of SO(3). The subdivision of each equilateral
triangle is performed in the same fashion. Therefore, every
rotation in Ri transforms a spherical graph Gl to itself and
preserves all the relevant structure of that spherical graph,
which is therefore graph isometric. Since a Chebyshev
polynomial filter is equivariant to the graph isometric trans-
formation [13], the graph convolutional layer is thus equiv-
ariant to the icosahedral rotation group Ri. In this way, we
construct a rotation-equivariant graph convolutional layer.

3.3. Rotation-Equivariant Pooling Layer

Multi-scale features with hierarchical representations of
graphs need to be considered when generalizing CNNs
to graphs. For this purpose, we propose a novel graph-
coarsening scheme for the proposed pixelation process. The
proposed pooling operator needs to be equivariant to the
rotation, which is important for constructing the rotation-
invariant classification architecture.

Specifically, we coarsen the l-th level spherical graph
into the (l−1)-th level by maintaining the vertices of graph
G∗l−1, as illustrated in Fig. 3. We keep the hierarchical
structure of the spherical graph without changing the under-
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Figure 3. Illustration of the proposed rotation-equivariant pooling
operator.

lying rotation group. Then we show that this can result in a
rotation-equivariant pooling. Let us define Vl as the set of
vertices of the l-th level spherical graph. Given a rotation R
applied to l-th level spherical signal, we have [LRx](vl) =
x(R−1vl),∀vl ∈ Vl. The pooling layer P keeps a coarser
spherical signal as P (x)(vl−1) = x(vl−1),∀vl−1 ∈ Vl−1.
Rotating the l-th level spherical signal and then feeding
it through the pooling layer results in [P (LRx)](vl−1) =
x((R−1v)l−1) = x(R−1(vl−1)),∀vl−1 ∈ Vl−1. And
feeding the l-th level spherical signal through the pooling
layer followed by rotating the resultant feature maps gives
[LRP (x)](vl−1) = x(R−1(vl−1)),∀vl−1 ∈ Vl−1. Thus,
[P (LRx)](vl−1) = [LRP (x)](vl−1),∀vl−1 ∈ Vl−1, i.e.,
the pooling operation is equivariant to the rotation. Since
the proposed convolutional layers are rotation equivariant at
different levels, the stacks of the graph convolutional layers
and the pooling layers also maintain rotation-equivariance.

In more detail, for all the feature maps Fhi ,∀i =
1, 2, ...,Kh of the h-th graph convolutional layer, we per-
form the same pooling operation. Assume that the input
spherical graph is at level l0. The h-th feature map is a
spherical graph at level l0 − h. For the graph pooling layer
following the h-th graph convolutional layer, we keep all
the vertices that belong to the spherical graph at the next
level l0 − h− 1, and the values on them are preserved.

3.4. Rotation-Invariant Transition Layer

By stacking graph convolutional layers and hierarchi-
cally pooling their results, we can fulfill the rotation-
equivariance. After that, however, we would prefer to en-
force the rotation invariance to performing classification
tasks. In conventional CNNs, a stack of convolutional and
pooling layers are followed by the fully-connected layers.
However, the fully-connected layers are still spatial sensi-
tive and not invariant to different rotations. Thus, a tran-
sition layer is required to extract the rotation-invariant fea-
tures before the fully-connected layers.

To enforce rotation-invariance, a computationally ef-
ficient method [13] is used to perform gradient compu-
tation and back propagation. Specifically, we compute
a set of graph-convolved signals tk = Tk(L̃)x using
Chebyshev polynomials Tk(L̃) of different order k with
k = 0, 1, ...,K for an input signal x. The resultant sig-
nals tk, k = 0, 1, ...,K correspond to the responses on
multi-scale resolutions, all of which are equivariant to the

rotation-equivariance. Then, we collect the mean µk and
variance σk on each convolved feature map tk across the
vertices of the spherical graph, and output a concatenated
feature vector [µ0, σ0, µ1, σ1, ..., µK , σK ]. The resultant
features are invariant to the rotation since they are spatially
agnostic to the responses of vertices in the spherical graph.

4. Experiments
In this section, we compare the equivariance errors of

graph convolutional layers and the invariance errors of tran-
sition layers achieved by the proposed SGCN with the three
pixelation schemes under various degrees of graph irregu-
larity. We also evaluate the effectiveness of the proposed
SGCN and compare it with the state-of-the-art methods in
the spherical image classification tasks on the S-MNIST
dataset and the S-CIFAR-10 dataset. To show the capability
of the SGCN for real problems, we further demonstrate the
performance comparison of 3D object classification tasks
on ModelNet40 dataset. In addition, we conduct ablation
studies on the roles of the hierarchical pooling layer and
transition layer.

4.1. Degree of Irregularity

We compare the proposed GICOPix with the two other
popular pixelation schemes for the degree of graph irregu-
larity, i.e., the Generalized Sprial Set Pixelation (GSSPix)
and the Hierarchical Equal Area isoLatitude Pixelation
(HEALPix), in terms of the proposed two measures.

The GSSPix is an explicit construction of almost uni-
formly distributed points on a sphere [22]. ForN points, the
set cut the sphere with N horizontal planes with each lati-
tude containing one point and the successive points having
approximately the same distances. The HEALPix is com-
monly used for cosmological data with the properties that
each pixel covers the same surface area as every other pixel.
And 24 pixels at the corner of the rhombus connecting two
rhombus of the base rhombic dodecahedron only have seven
neighboring pixels.

We illustrate the graphs constructed based on the three
pixelation schemes in Fig. 4, where the proposed GICOPix
scheme results in a more regular spherical graph. We also
calculate the weight variance V1 and degree variance V2 of
the spherical graphs at three different levels L = 0, 2, 4. As
shown in Table 1, the spherical graph based on the proposed
GICOPix scheme has the smallest variance at all the levels.
Especially, for the weight variance V1, it is smaller with
one order of magnitude, which suggests that the proposed
GICOPix-based spherical graph is the most regular one.

4.2. Equivariance Error

To assess the proposed criterion of graph construction,
we measure the equivariance error for the first spherical
convolutional layer of the three implementations of the



GICOPix

HEALPix

GSSPix

Figure 4. The spherical graph of level L = 0, 2, 4 with the three
different pixelation schemes, i.e., GSSPix, HEALPix and the pro-
posed GICOPix.

Table 1. Quantitative measurement of the degree of irregularity
with the three different pixelation schemes. v1 and v2 are the vari-
ances of edge weights and vertex degrees, respectively.

Scheme Level # of vertices V1(1e-2) V2(1e-1)
0 12 2.867 2.500

GSSPix 2 162 3.183 6.327
4 2562 2.514 4.800
0 12 1.077 0

HEALPix 2 192 1.296 1.094
4 3072 1.465 0.078
0 12 0 0

GICOPix 2 162 0.149 0.686
4 2562 0.154 0.047

SGCN with three different graph construction schemes,
which are denoted as the GICOPix-SGCN, GSSPix-SGCN,
and HEALPix-SGCN. Their pooling layers are slightly dif-
ferent from each other since they depend on different pix-
elation schemes. Following the work of [3], we define the
equivariance error as

∆ =
1

n

n∑
i=1

std(LRiΦ(xi)− Φ(LRixi))/std(Φ(xi)).

(6)

We sample n = 1000 spherical images xi, i = 1, 2, ..., n
with random 3D rotations Ri. Feeding each spherical im-
age through the first graph convolutional layer results in 32
feature maps. By performing a graph isometric rotation on a
completely regular graph, the equivariance error is expected
to be zero. However, the constructed spherical graph is not
ideally regular with random rotations from the continuous
3D rotation group SO(3). As shown in Table 2, the pro-
posed GICOPix-SGCN has the smallest equivariance error,
and the SGCN based on other pixelation scheme has a larger
equivariance error with higher graph irregularity. This indi-
cates that the proposed principles are effective for modeling

Table 2. Equivariance error of the first spherical graph convolu-
tional layer with the three pixelation schemes. The SGCN based
on GICOPix has the smallest equivariance error.

Scheme GSSPix HEALPix GICOPix
Error 0.942 0.434 0.385
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Figure 5. Illustration of the invariance error of the SGCN with
the three different pixelation schemes, where the numbers besides
the colorbar are the normalized Euclidean distances indicating the
degree of dissimilarity of different features.

the rotation-equivariance.

4.3. Invariance Error

We evaluate the invariance error of the transition layer
to assess the ability of the proposed SGCN capturing the
rotation-invariance. Specially, we select three different
spherical images from the S-MNIST dataset, i.e, ’0’, ’2’,
and ’7’, and project each image in nine different positions
θ ∈ {−1/8, 0, 1/8}, φ ∈ {0, 1/8, 1/4}, totally yielding
27 spherical images. More details of spherical images cre-
ation will be introduced in the following section. By feed-
ing these images into the SGCN, we obtain the features of
the transition layer and evaluate the pairwise Euclidean dis-
tances in a [27 × 27] distance matrix. Ideally, the feature
maps of different positions for the same spherical image
should be identical, which means the three [9 × 9] diago-
nal sub-matrices of the [27× 27] distance matrix should be
zero (i.e., in blue in Fig. 5).

As illustrated in Fig. 5, the GICOPix-SGCN has more
similar feature maps for different positions of the same
spherical image than the GSSPix-SGCN and HEALPix-
SGCN. This suggests the SGCN has smaller invariance er-
ror and thus can encode the rotation-equivariance and ful-
fill rotation-invariance better with a more regular pixelation
scheme.

4.4. S-MNIST Classification

Dataset. The S-MNIST dataset is created by placing the
digits on a plane tangent to the sphere at point (θ, φ) and
projecting them on the spherical surfaces via the gnomonic
projection [12, 5]. To evaluate the generalization perfor-
mance of the proposed SGCN on the rotated images, we
create two instances of this dataset: the non-rotated (NR)
dataset and the rotated (R) ones. For the NR dataset, the
tangent position is chosen randomly from a uniform dis-
tribution of spherical coordinates with the longitude θ ∈
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in Fig. 6.
Experiment setup. We benchmark our results against

the S2CNNs [3], the GCNNs [12], the PDOs [11] and the
SphereNet [5]. Except that the PDOs [11] have one Mesh-
conv block, two ResBlocks, and an average pool layer and
the transition layer of the SGCN has Chebyshev polynomi-
als of the highest order 5, the architectures of all the models
are the same. The network consists of two stacks of convo-
lutional and pooling layers, followed by a fully-connected
layer of ten neurons. The first stack has 32 filters, while
the second has 64 filters. All the convolutional layer is fol-
lowed by the ReLU activation. The order of the polynomial
filter for the graph convolutional layer is set to 25. We input
spherical signals at the level-4 resolution with 2562 pixels
for GSSPix-SGCN and GICOPix-SGCN, 3072 pixels for
HEALPix-SGCN. We train the models by the momentum
optimizer with momentum 0.9 for 50 epochs with batch size
10. To avoid the overfitting, the batch normalization, weight
decay rate 5e − 4 and dropout 0.9 are adopted. The initial
learning rate is 0.02 and reduced to 0.002 after 33 epochs.

Result. The classification performances of different
models on S-MNIST are compared in Table 3. We train
each model on the rotated dataset and test on the rotated
dataset as well (R/R). The GICOPix-SGCN outperform all
the baselines except the Spherenet [5] based on the con-
ventional CNNs. To evaluate the ability of models in en-
coding rotation-equivariance, we train the proposed model
and Spherenet [5] on the non-rotated dataset and test on
the rotated dataset (N/R). The Spherenet [5] performs much
worse, while the performance of the proposed GICOPix-
SGCN performs the best with only a slight decrease (Dec.)
in performance compared to R/R.

We also compare the performances of the three different
pixelation schemes with the same network, i.e., the GSSPix-
SGCN, the HEALPix-SGCN, and the GICOPix-SGCN. In
the R/R and N/R settings, the proposed GICOPix-SGCN

Table 3. Accuracy(%) of different models on the S-MNIST
dataset. We achieve the comparable performance with less param-
eters in the R/R setting. In the N/R setting, the GICOPix-SGCN
achieves the best performance. The performance under the “N/R”
setting and “Dec” demonstrate the proposed model has stronger
capability to capture rotation-equivariance.

Models R/R N/R Dec. Param.
GCNNs [12] 82.79 - - 282K
S2CNNs [3] 88.14 - - 149K
PDOs [11] 83.00 61.09 21.91 62 K

SphereNet [5] 94.41 55.18 39.22 196K
GSSPix-SGCN 74.41 43.26 31.15 58K

HEALPix-SGCN 92.36 91.41 0.95 58K
GICOPix-SGCN 93.58 93.43 0.15 58K

Table 4. Accuracy(%) of different models on the S-CIFAR-10
dataset. The GICOPix-SGCN achieves the best performance in
both R/R and N/R settings. The performance under the “N/R”
setting and “Dec” demonstrate the proposed model has stronger
capability to capture the rotation-equivariance.

Models R/R N/R Dec. Param.
SphereNet [5] 53.90 37.18 16.72 196K

GSSPix-SGCN 47.51 38.85 8.66 58K
HEALPix-SGCN 55.08 51.90 3.18 58K
GICOPix-SGCN 58.03 56.84 1.19 58K

outperforms the SGCNs based on the other two schemes
with a significant performance gain, especially for the N/R
setting. We attribute the success of the GICOPix-SGCN
to the ability to explore rotation-equivariance. Besides, the
SGCN based on a more regular spherical graph has a better
performance on rotation-invariant classification for the S-
MNIST dataset.

4.5. S-CIFAR-10 Classification

Dataset. The S-CIFAR-10 dataset contains more photo-
realistic images than the S-MNIST dataset. We create the
R and NR sets of the S-CIFAR-10 dataset in the same way
as generating the S-MNIST dataset. The ERP of a spherical
image from the S-CIFAR-10 dataset with φ = 0, π3 ,

π
6 ,

π
2 is

shown in Fig. 6
Experiment setup. We adopt the SphereNet [5] as our

baseline model. The network of the SGCN and implementa-
tion details are the same as the S-MNIST classification task
except that the learning rate is reduced to 0.01 and 0.001.

Result. The performances of different models on the
S-CIFAR-10 dataset are compared in Table 4. The pro-
posed GICOPix-SGCN achieve the state-of-the-art perfor-
mance in both R/R and N/R settings. Especially, for the
N/R setting, the proposed GICOPix-SGCN has the smallest
decrease in the performance. This suggests that the pro-
posed SGCN based on a more regular spherical graph has
a stronger ability to encode rotation-equivariance and fulfill
rotation-invariance, and thus performs better for the rotation
invariant classification on the S-CIFAR-10 dataset.



4.6. 3D Object Classification

Dataset. The ModelNet40 [28] dataset contains 40-class
3D models with 9843 training samples and 2468 testing
samples. To apply the proposed SGCN in the 3D object
classification task, we convert from the 3D geometries to
signals on the sphere by following the method in [3, 11].
We project the 3D meshes onto a level-4 unit sphere with
each mesh at the coordinate origin. First, we send a ray
from the points on the sphere to the origin and record 3
channels information: the ray length from each point to the
mesh and sin, cos of the surface angle. Further, we aug-
ment the signal with another 3 channels for the convex hull
of the mesh, forming 6 channels of the signal in total. Fol-
lowing [7], for the NR dataset, the 3D objects are rotated
with random azimuthal rotations. For the R dataset, the 3D
objects are rotated with arbitrary rotations randomly.

Experiment Setup. We benchmark our results against
the 3D model, i.e, the PointNet [18], the SubVolSup MO
[19], the MVCNN 12x [25], the RICNN [31], the Cluster-
Net [2], and the spherical CNN model, i.e., the PDOs [11]
and the SphericalCNN [7]. Compared to the network of our
SGCN with two stacks of convolutional layers and plooing
layers, all these baseline methods have a much more com-
plex structure and a significantly enormous number of net-
work parameters, such as 4 blocks with one meshconv block
and three ResBlocks for the PDOs [11], and 8 spherical con-
volutional layers for the SphericalCNN [7]. The implemen-
tation details of the SGCN are the same as the S-MNIST
classification task except that the networks are trained for
100 epochs with batch size 16. The initial learning rate is
0.01 and reduced to 0.001 after 50 epochs.

Result. The performances of different models on Mod-
elNet40 dataset are compared in Table 5. Compared to the
3D models which have a much more complex structure,
the GICOPix-SGCN achieves comparable performance in
the R/R setting and N/R setting. Compared to the spehri-
cal CNN models, the GICOPix-SGCN achieves comparable
performance to the PDOs [11] and the SphericalCNN [7] in
the R/R setting. The competing methods suffer a sharp drop
in performance for the N/R setting with the unseen rotations
presented, and the PDOs [11] perform no better than a ran-
dom chance. In contrast, the GICOPix-SGCN is robust to
this and still perform well. This indicates that our GICOPix-
SGCN has strong applicability to real problems in 3D ob-
ject classification. And the SGCN based on a more regular
spherical graph has a stronger ability to explore rotation-
equivariance and fulfill rotation-invariance.

4.7. Ablation Study

In Tables 3, 4 and 5, we have demonstrated the effec-
tiveness of the proposed SGCN with a regular graph for
rotation invariant classification, and the important role of
the graph construction for modeling rotation-equivariance.

Table 5. Accuracy(%) of different models on the ModelNet40
dataset. The GICOPix-SGCN achieves the comparable perfor-
mance to the 3D models in both R/R and N/R settings. Compared
to the spherical CNN models, the GICOPix-SGCN achieves the
best performance in the N/R setting. The performance under the
“N/R” setting and “Dec” demonstrate the ability of the proposed
model to capture rotation-equivariance.

Models R/R N/R Dec. Param.
PointNet [18] 83.6 14.7 68.9 3.5M

SubVolSup MO [19] 85.0 45.5 39.5 17M
MVCNN 12x [25] 77.6 70.1 7.5 99M

RICNN [31] 86.4 86.4 0.0 0.7M
ClusterNet [2] 87.1 87.1 0.0 1.4M

PDOs [11] 89.8 23.5 66.3 3.7M
SphericalCNN [7] 86.9 78.6 10.2 0.5M

GSSPix-SGCN 66.1 14.1 52.0 0.1M
HEALPix-SGCN 83.9 78.4 5.5 0.1M
GICOPix-SGCN 86.3 84.0 2.3 0.1M

Table 6. The effect of different components in GICOPix-SGCN on
the S-MNIST and ModelNet40 dataset. “HPool” denotes the pro-
posed hierarchical pooling scheme and “Tran” indicates the pro-
posed transition layer.

HPool Tran S-MNIST ModelNet40
R/R N/R R/R N/R

X X 93.58 93.43 86.26 84.04
X 93.31 92.67 84.00 83.31

X 93.91 91.85 85.58 81.97

We also study here the impact of the two main components
of the proposed SGCN, i.e., the hierarchical pooling layer
and the transition layer. In Table 6, “HPool” denotes the
proposed hierarchical pooling, and “Tran” denotes the pro-
posed transition layer. We replace the proposed pooling
layer by the common method as in [6] and replace the transi-
tion layer by the global average pooling. In Table 6, we can
see that the transition layer has a gain of 0.76% for the S-
MNIST classification and 0.73% for the ModelNet40 clas-
sification in the N/R setting. The hierarchical pooling has
an additional 1.58% improvement for the S-MNIST classi-
fication and 2.07% improvement for the ModelNet40 in the
N/R setting.

5. Conclusion

In this paper, we have presented the spherical graph
convolutional network (SGCN) based on GICOPix to en-
code rotation-equivariance for spherical image analysis. We
proposed a spherical graph construction criterion and con-
structed the spherical graph based on GICOPix with the
minimum degree of irregularity. In addition, we designed
the SGCN with the hierarchical pooling operator and tran-
sition layer. The experiments have demonstrated that the
GICOPix-SGCN could encode the rotation-equivariance
with a stronger ability to recognize the spherical images.



References
[1] John R Baumgardner and Paul O Frederickson. Icosahedral

discretization of the two-sphere. SIAM Journal on Numerical
Analysis, 22(6):1107–1115, 1985.

[2] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. Clusternet: Deep hierarchical cluster
network with rigorously rotation-invariant representation for
point cloud analysis. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4994–
5002, 2019.

[3] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max
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