PoseAnimate: Zero-shot high fidelity pose controllable character animation

Paper ID 2920

Figure 1: Our PoseAnimate framework is capable of generating smooth and high-quality character animations for character images across various pose sequences.

Abstract

 Image-to-video(I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity with the source image. However, existing approaches suffer from character appearance inconsistency and poor preservation of fine details. Moreover, they require a large amount of video data for training, which can be computationally demanding. To ad-dress these limitations, we propose PoseAnimate, a novel zero-shot I2V framework for character an- ¹⁰ imation. PoseAnimate contains three key components: 1) Pose-Aware Control Module (PACM) incorporates diverse pose signals into conditional em- ¹³ beddings, to preserve character-independent content and maintain precise alignment of actions. 2) 15 Dual Consistency Attention Module (DCAM) en-
16 hances temporal consistency, and retains character 17 identity and intricate background details. 3) Mask-Guided Decoupling Module (MGDM) refines distinct feature perception, improving animation fi- ²⁰

 delity by decoupling the character and background. We also propose a Pose Alignment Transition Al- gorithm (PATA) to ensure smooth action transition. Extensive experiment results demonstrate that our approach outperforms the state-of-the-art training- based methods in terms of character consistency and detail fidelity. Moreover, it maintains a high level of temporal coherence throughout the gener-ated animations.

³⁰ 1 Introduction

 [I](#page-8-1)mage animation [\[Siarohin](#page-8-0) *et al.*, 2019b; [Siarohin](#page-8-1) *et al.*, [2019a;](#page-8-1) [Siarohin](#page-8-2) *et al.*, 2021; Wang *et al.*[, 2022;](#page-8-3) [Zhao and](#page-8-4) [Zhang, 2022\]](#page-8-4) is a task that brings life into static images by seamlessly transforming them into dynamic and realistic videos. It involves the transformation of still images into a sequence of frames that exhibit smooth and coherent mo- tions. In this task, character animation has gained significant attention due to its valuable applications in various scenar- ios, such as television production, game development, online retail and artistic creation, etc. However, minor motion varia- tions hardly meet with the requirements. The goal of charac- ter animation is to make the character in image perform target pose sequences, while maintaining identity consistency and visual coherence. In early works, most of character animation were driven by traditional animation techniques, which in- volves meticulous frame-by-frame drawing or manipulation. In the subsequent era of deep learning, the advent of gen- erative models [\[Goodfellow](#page-7-0) *et al.*, 2014; Zhu *et al.*[, 2017;](#page-8-5) Karras *et al.*[, 2019\]](#page-7-1) drove the shift towards data-driven and automated approaches [Ren *et al.*[, 2020;](#page-8-6) Chan *et al.*[, 2019;](#page-7-2) Zhang *et al.*[, 2022\]](#page-8-7). However, there are still ongoing chal- lenges in achieving highly realistic and visually consistent animations, especially when dealing with complex motions, fine-grained details, and long-term temporal coherence.

 Recently, diffusion models [Ho *et al.*[, 2020\]](#page-7-3) have demon- strated groundbreaking generative capabilities. Driven by the open source text-to-image diffusion model Stable Diffu- sion [\[Rombach](#page-8-8) *et al.*, 2022], the realm of video generation has achieved unprecedented progress in terms of visual qual- [i](#page-8-9)ty and content richness. Hence, several endeavors [\[Wang](#page-8-9) *et al.*[, 2023a;](#page-8-9) Xu *et al.*[, 2023;](#page-8-10) Hu *et al.*[, 2023\]](#page-7-4) have sought to extrapolate the text-to-video(T2V) methods to image-to- video(I2V) by training additional image feature preserving networks and adapt them to the task of character animation. Nevertheless, these training-based methods do not possess accurate feature preservation capabilities for arbitrary open- domain images, and suffer from notable deficiencies in ap- pearance control and loss of fine details. Furthermore, they require additional training data and computational overhead. To this end, we contemplate employing a more refined and efficient resolution, image reconstruction for feature preser- vation, to tackle this problem. We propose PoseAnimate, de- picted in Fig. [2,](#page-3-0) a zero-shot reconstruction-based I2V frame- work for pose controllable character animation video gener- ation. PoseAnimate introduces a pose-aware control mod- ule(PACM), shown in Fig. [3](#page-3-1) which optimizes the text embed-ding twice based on the original and target pose conditions respectively finally resulting a unique pose-aware embedding $\frac{78}{2}$ for each generated frame. This optimization strategy allows ⁷⁹ for the generated actions aligned to the target pose while con- ⁸⁰ tributing to keep the character-independent scene consistent. 81 However, the introduction of a new target pose in the second as optimization, which differs from the original pose, inevitably as undermines the reconstruction of the character's identity and 84 background. Thus, we further devise a dual consistency atten-
85 tion module(DCAM), as dedicated in the right part of Fig. [2,](#page-3-0) 86 to address the disruption, in addition to maintain a smooth 87 temporal progression. Since directly employing the entire at- ⁸⁸ tention map or key for attention fusion may result in the loss 89 of fine-grained detail perception. We propose a mask-guided 90 decoupling module(MGDM) to enable independent and fo- ⁹¹ cused spatial attention fusion for both the character and back- ⁹² ground. As such, our framework promises to capture the in- ⁹³ tricate character and background details, thereby effectively 94 enhancing the fidelity of the animation. Besides, for the sake 95 of adaptation to various scales and positions of target pose ⁹⁶ sequences, a pose alignment transition algorithm (PATA) is 97 designed to ensure pose alignment and smooth transitions. 98 Through combination of these novel modules, PoseAnimate 99 achieves promising character animation results, as shown in 100 Fig. [1,](#page-0-0) in a more efficient manner with lower computational 101 overhead. ¹⁰²

To summarize, our contributions are as follows: 1) We ¹⁰³ pioneer a reconstruction-based approach to handle the task 104 of character animation and propose PoseAnimate, a novel ¹⁰⁵ zero-shot framework, which generates coherent high-quality ¹⁰⁶ videos for arbitrary character images under various pose se- ¹⁰⁷ quences, without any training of the network. To the best of 108 our knowledge, we are the first to explore a training-free ap- ¹⁰⁹ proach to character animation. 2) We propose a pose-aware 110 control module that enables precise alignment of actions 111 while maintaining consistency across character-independent 112 scenes. 3) We decouple the character and the background 113 regions, performing independent inter-frame attention fusion 114 for them, which significantly enhances visual fidelity. 4) Ex- ¹¹⁵ periment results demonstrate the superiority of PoseAnimate 116 compared with the state-of-the-art training-based methods in 117 terms of character consistency and image fidelity. 118

2 Related work 119

2.1 Diffusion Models for Video Generation

Image generation has made significant progress due to the ¹²¹ advancement of Diffusion Models(DMs) [Ho *et al.*[, 2020\]](#page-7-3). 122 [M](#page-8-8)otivated by DM-based image generation [\[Rombach](#page-8-8) *et al.*, 123 [2022\]](#page-8-8), some works [Yang *et al.*[, 2023;](#page-8-11) Ho *et al.*[, 2022;](#page-7-5) ¹²⁴ [Nikankin](#page-8-12) *et al.*, 2022; Esser *et al.*[, 2023;](#page-7-6) [Blattmann](#page-7-7) *et al.*, ¹²⁵ [2023b\]](#page-7-7) explore DMs for video generation. Most video gen- ¹²⁶ eration methods incorporate temporal modules to pretrained 127 image diffusion models, extending 2D U-Net to 3D U-Net. ¹²⁸ Recent works control the generation of videos with mul- ¹²⁹ tiple conditions. For text-guided video generation, these ¹³⁰ works [He *et al.*[, 2022;](#page-7-8) Ge *et al.*[, 2023;](#page-7-9) Gu *et al.*[, 2023\]](#page-7-10) usu- ¹³¹ ally tokenize text prompts with a pretrained image-language 132 model, such as CLIP [\[Radford](#page-8-13) *et al.*, 2021], to control video 133 generation through cross-attention. Due to the imperfect ¹³⁴

 alignment between language and visual modalities in existing image-language models, text-guided video generation can't [a](#page-8-14)chieve high textual alignment. Alternative methods[\[Wang](#page-8-14) *et al.*[, 2023b;](#page-8-14) Chen *et al.*[, 2023;](#page-7-11) [Blattmann](#page-7-12) *et al.*, 2023a] employ images as guidance for video generation. These works en- code reference images to text token space, which benefits cap- [t](#page-8-14)uring visual semantic information. VideoComposer[\[Wang](#page-8-14) *et al.*[, 2023b\]](#page-8-14) combines textual conditions, spatial condi- tions(e.g., depth, sketch, reference image) and temporal con- ditions(e.g., motion vector) through Spatio-Temporal Condi- tion encoders. VideoCrafter1[Chen *et al.*[, 2023\]](#page-7-11) introduces a text-aligned rich image embedding to capture details both from text prompts and reference images. Stable Video Dif- fusion [\[Blattmann](#page-7-12) *et al.*, 2023a] is a latent diffusion model for high-resolution T2V and I2V generation, which sets three different stages for training: text-to-image pretraining, video pretraining, and high-quality video finetuning.

¹⁵² 2.2 Video Generation with Human Pose

 Generating videos with human pose is currently a popu- lar task. Compared to other conditions, human pose can better guide the synthesis of motions in videos, which en- [s](#page-7-13)ures good temporal consistency. Follow your pose[\[Ma](#page-7-13) *et al.*[, 2023\]](#page-7-13) introduces a two-stage method to generate pose- [c](#page-8-9)ontrollable character videos. Many studies [\[Wang](#page-8-9) *et al.*, [2023a;](#page-8-9) [Karras](#page-7-14) *et al.*, 2023; Xu *et al.*[, 2023;](#page-8-10) Hu *et al.*[, 2023\]](#page-7-4) try to generate character videos from still images via pose se- quence, which needs to preserve consistency of appearance [f](#page-8-15)rom source images as well. Inspired by ControlNet[\[Zhang](#page-8-15) *et al.*[, 2023\]](#page-8-15), DisCo[Wang *et al.*[, 2023a\]](#page-8-9) realizes disentan- gled control of human foreground, background and pose, which enables faithful human video generation. To increase [fi](#page-7-14)delity to the reference human images, DreamPose[\[Karras](#page-7-14) *et al.*[, 2023\]](#page-7-14) proposes an adapter to models CLIP and VAE image embeddings. MagicAnimate[Xu *et al.*[, 2023\]](#page-8-10) adopts ControlNet[\[Zhang](#page-8-15) *et al.*, 2023] to extract motion conditions. It also introduces a appearance encoder to model reference images embedding. Animate Anyone[Hu *et al.*[, 2023\]](#page-7-4) de- signs a ReferenceNet to extract detail features from reference images, combined with a pose guider to guarantee motion generation.

¹⁷⁵ 3 Method

176 Given a source character image I_s , and a desired pose se-177 quence $P = \{p_i\}_{i=1}^M$, where \overline{M} is the length of sequence. In ¹⁷⁸ the generated animation, we adopt a progressive approach to 179 transition the character seamlessly from the original pose p_s 180 to the desired pose sequence $P = \{p_i\}_{i=1}^M$. We first facilitate ¹⁸¹ the Pose Alignment Transition Algorithm(PATA), derailed in 182 supplementary material, to smoothly interpolate t intermedi-183 ate frames between the source pose p_s and the target pose 184 sequence $P = \{p_i\}_{i=1}^M$. Simultaneously, it aligns each target 185 pose p_i with the source pose p_s to compensate for their dis-¹⁸⁶ crepancies in terms of position and scale. As a result, the final target pose sequence is $P = \{p_i\}_{i=0}^N$, where $N = M + t$. It 188 is worth noting that the first frame x_0 in our generated an-189 imation $X = \{x_i\}_{i=0}^N$ is identical to the source image I_s . ¹⁹⁰ Secondly, we propose a pose-aware control module(PACM) that optimizes a unique pose-aware embedding for each gen- ¹⁹¹ erated frame. This module can eliminate perturbation of orig- ¹⁹² inal character posture, thereby ensuring the generated actions 193 aligned with the target pose. Furthermore, it also maintains ¹⁹⁴ consistency of content irrelevant to characters. Thirdly, a dual 195 consistency attention module(DCAM) is developed to ensure 196 consistency of the character identity and improve temporal 197 consistency. In addition, we design a mask-guided decou- ¹⁹⁸ pling module(MGDM) to further enhance perception of char-
199 acters and backgrounds details. The overview of our PoseAn- ²⁰⁰ imate is shown in Fig. [2.](#page-3-0) 201

In this section, we first give an introduction of Stable Diffu- ²⁰² sion in Sec [3.1.](#page-2-0) Subsequently, Sec [3.2](#page-2-1) introduces the incorpo- ²⁰³ ration of motion awareness into pose-aware embedding. The ²⁰⁴ proposed dual consistency control is elaborated in Sec [3.3,](#page-3-2) ²⁰⁵ followed by mask-guided decoupling module in Sec [3.4.](#page-4-0) 206

3.1 Preliminaries on Stable Diffusion 207

Stable Diffusion [\[Rombach](#page-8-8) *et al.*, 2022] has demonstrated 208 strong text-to-image generation ability through a diffusion ²⁰⁹ model in a latent space constructed by a pair of image en- ²¹⁰ coder $\mathcal E$ and decoder $\mathcal D$. For an input image $\mathcal I$, the encoder $\mathcal E$ 211 first maps it to a lower dimensional latent code $z_0 = \mathcal{E}(\mathcal{I})$, 212 then Gaussian noise is gradually added to z_0 through the dif- 213 fusion forward process: 214

$$
q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; \sqrt{1-\beta_t} \mathbf{z}_{t-1}, \beta_t \mathbf{I}),
$$
 (1)

where $t = 1, ..., T$, denotes the timesteps, $\beta_t \in (0, 1)$ is a 215 predefined noise schedule. Through a parameterization trick, ²¹⁶ we can directly sample z_t from z_0 : 217

$$
q(\mathbf{z}_t|\mathbf{z}_0) = \mathcal{N}(\mathbf{z}_t; \sqrt{\bar{\alpha}_t} \mathbf{z}_0, (1 - \bar{\alpha}_t)\mathbf{I}),
$$
 (2)

where $\bar{\alpha}_t = \prod_{i=1}^t \alpha_i$, and $\alpha_t = 1 - \beta_t$. Diffusion model uses 218 a neural network ϵ_{θ} to learn to predict the added noise ϵ by 219 minimizing the mean square error of the predicted noise: 220

$$
\min_{\theta} \mathbb{E}_{z,\epsilon \sim \mathcal{N}(0,I),t} [\|\epsilon - \epsilon_{\theta}(z_t,t,\mathbf{c})\|_2^2],\tag{3}
$$

where c is embedding of textual prompt. And we can adopt 221 a deterministic sampling process [Song *et al.*[, 2020\]](#page-8-16) to itera- ²²² tively recover $z_0 \sim \mathcal{P}_{data}(z)$ from random noise z_T : 223

$$
z_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \underbrace{\hat{z}_{t\to 0}}_{\text{predicted } z_0} + \underbrace{\sqrt{1 - \bar{\alpha}_{t-1}} \epsilon_{\theta}(z_t, t, \mathbf{c})}_{\text{direction pointing to } z_{t-1}}, \qquad (4)
$$

where $\hat{z}_{t\to 0}$ is the predicted z_0 at timestep t, 224

$$
\hat{z}_{t\to 0} = \frac{z_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(z_t, t, \mathbf{c})}{\sqrt{\bar{\alpha}_t}}.
$$
\n(5)

3.2 Pose-Aware Control Module 225

For generating a high fidelity character animation from a ²²⁶ source image, two tasks need to be accomplished. Firstly, 227 it is critical to preserve the consistency of original char- ²²⁸ acter and background in generated animation. In contrast ²²⁹ to other approaches [\[Karras](#page-7-14) *et al.*, 2023; Xu *et al.*[, 2023;](#page-8-10) ²³⁰ Hu *et al.*[, 2023\]](#page-7-4) that rely on training additional spatial ²³¹ preservation networks for consistency identity, we achieve ²³²

Figure 2: Overview of PoseAnimate. The pipeline is on the left, we first utilize the Pose Alignment Transition Algorithm(PATA) to align the desired pose with a smooth transition to the target pose. We utilize the inversion noise of the source image as the starting point for generation. The optimized pose-aware embedding of PACM, in Sec. [3.2,](#page-2-1) serves as the unconditional embedding for input. The right side is the illustration of DCAM in Sec. [3.3.](#page-3-2) The attention block in this module consists of Dual Consistency Attention(DCA), Cross Attention (CA), and Feed-Forward Networks (FFN). Within DCA, we integrate MGDM to independently perform inter-frame attention fusion for the character and background, which further enhance the fidelity of fine-grained details.

 it through a computationally efficient reconstruction-based method. Secondly, the actions in generated frames needs to align with the target poses. Although the pre-trained Open- Pose ControlNet [\[Zhang](#page-8-15) *et al.*, 2023] has great spatial control capabilities in controllable condition synthesis, our purpose is to discard the original pose and generate new continuous motion. Therefore, directly introducing pose signals through ControlNet may result in conflicts with the original pose, re-sulting in severe ghosting and blurring in motion areas.

 In light of this, we propose the pose-aware control module, as illustrated in the Fig. [3.](#page-3-1) Inspired by the idea of inversion in image editing [\[Mokady](#page-7-15) *et al.*, 2023], we achieve the percep-245 tion of pose signals by optimizing the text embedding \varnothing_{text} 246 twice based on the original pose p_s and target pose p_i respec- tively. In the first optimization, i.e. pose-aware inversion, 248 we iteratively refine the original text embedding \varnothing_{text} to ac- curately reconstruct the intricate details of the source image I_s under the original pose p_s . Building upon the optimized 251 source embeddings $\{\varnothing_{s,t}\}_{t=1}^{T}$ obtained from this process, we then proceed with the second optimization, i.e. pose-aware embedding optimization, where we inject the target pose sig-254 nals $P = \{p_i\}_{i=1}^N$ into the optimized pose-aware embed-255 dings $\{ {\widetilde{\varnothing}}_{x_i,t} \}_{i=1}^T \}_{i=1}^N$, as detailed in Alg. [1.](#page-4-1) Perceiving the target pose signals, these optimized pose-aware embed-257 dings $\{ \{\widetilde{\varnothing}_{x_i,t} \}_{t=1}^T \}_{i=1}^N$ ensure a flawless alignment between the generated character actions and the target poses, while upholding the consistency of character-independent content.

 Specifically, to incorporate the pose signals, we integrate ControlNet into all processes of the module. Diverging from null-text inversion [\[Mokady](#page-7-15) *et al.*, 2023] that achieves image [r](#page-7-16)econstruction by optimizing unconditional embeddings [\[Ho](#page-7-16) [and Salimans, 2022\]](#page-7-16), our pose-aware inversion optimizes the 265 conditional embedding \varnothing_{text} of text prompt C during the re- construction process. The motivation stems from the observa- tion that conditional embedding contains more abundant and robust semantic information, which endows it with a height-ened potential for encoding pose signals.

Figure 3: Illustration of pose-aware control module. We optimize the text embedding twice to inject motion awareness into pose-aware embedding.

3.3 Dual Consistency Attention Module 270

Although the pose-aware control module accurately captures 271 and injects body poses, it may unintentionally alter the iden- ²⁷² tity of the character and the background details due to the ²⁷³ introduction of different pose signals, as demonstrated by the ²⁷⁴ example $Z_{x_i,0}$ in Fig. [3,](#page-3-1) which is undesirable. Since self- 275 attention layers in the U-Net [Ronneberger *et al.*, 2015] play a 276 attention layers in the U-Net [\[Ronneberger](#page-8-17) *et al.*, 2015] play a crucial role in controlling appearance, shape, and fine-grained 277 details, existing attention fusion paradigms commonly em- ²⁷⁸ ploy cross-frame attention mechanism [Ni *et al.*[, 2022\]](#page-7-17), to ²⁷⁹

Algorithm 1 Pose-aware embedding optimization.

Input: Source character image I_s , source character pose p_s , text prompt C, and target pose sequence $P = \{p_i\}_{i=1}^N$, number of frames N, timestep T. **Output**: Optimized source embeddings $\{\emptyset_{s,t}\}_{t=1}^T$, Opti-

mized pose-aware embeddings $\{\{\widetilde{\emptyset}_{x_i,t}\}_{t=1}^T\}_{i=1}^N$, and latent code Z_T .

- 1: Set guidance scale = 1.0. Calculate DDIM inversion latent code $Z_0, ..., Z_T$ corresponding to input image I_s .
- 2: Set guidance scale = 7.5. Obtain optimized source embeddings $\{\emptyset_{s,t}\}_{t=1}^T$ through pose-aware inversion (Fig. [3\)](#page-3-1).

3: for $i = 1, 2, ..., N$ do

4: Initialize
$$
\widetilde{Z}_{x_i,T} = Z_T
$$
, $\{\widetilde{\varnothing}_{x_i,t}\}_{t=1}^T = \{\varnothing_{s,t}\}_{t=1}^T$;
5. for $t = T$, T , T , 1 , 1 , $d\varnothing$.

5: **for**
$$
t = T, T - 1, ..., 1
$$
 do

6:
$$
\widetilde{Z}_{x_i,t-1} \leftarrow \text{Sample}(\widetilde{Z}_{x_i,t}, \epsilon_\theta(\widetilde{Z}_{x_i,t}, \widetilde{\varnothing}_{x_i,t}, p_i, C, t));
$$

 $\overline{1}$

7:
$$
\widetilde{\varnothing}_{x_i,t} \leftarrow \widetilde{\varnothing}_{x_i,t} - \eta \nabla_{\widetilde{\varnothing}} \text{MSE}(Z_{t-1}, \widetilde{Z}_{x_i,t-1});
$$

8: end for

9: end for

10: Return
$$
Z_T
$$
, $\{\emptyset_{s,t}\}_{t=1}^T$, $\{\{\widetilde{\emptyset}_{x_i,t}\}_{t=1}^T\}_{i=1}^N$

²⁸⁰ facilitate spatial information interaction across frames:

$$
\text{Attention}(Q^i, K^j, V^j) = \text{softmax}\left(\frac{Q^i(K^j)^\top}{\sqrt{d}}\right) V^j, \quad (6)
$$

281 where Q^i is the query feature of frame x_i , and K^j , V^j cor-282 respond to the key feature and value feature of frame x_j . 283 As pose p_1 is identical to the original pose p_s , the recon-284 struction of frame x_0 remains undisturbed, allowing for a 285 perfect restoration of the source image I_s . Hence, we can ²⁸⁶ compute the cross-frame attention between each subsequent 287 frame $\{x_i\}_{i=1}^N$ with the frame x_0 to ensure the preservation of ²⁸⁸ identity and intricate details. However, solely involving frame 289 x_0 in the attention fusion would bias the generated actions to-²⁹⁰ wards the original action, resulting in ghosting artifacts and ²⁹¹ flickering. Consequently, we develop the Dual Consistency ²⁹² Attention Module(DCAM) by replacing self-attention layers ²⁹³ with our dual consistency attention(DC Attention) to address ²⁹⁴ the issue of appearance inconsistency and improve temporal ²⁹⁵ consistency. The DC Attention mechanism operates for each 296 subsequent frame x_i as follows:

$$
CFA_{i,j} = \text{Attention}(Q^i, K^j, V^j),
$$

Dual Consistency Attention $(x_i) := \text{DCA}_i =$ (7)

$$
\lambda_1 * \text{CFA}_{i,0} + \lambda_2 * \text{CFA}_{i,i-1} + \lambda_3 * \text{CFA}_{i,i},
$$

297 where $\lambda_1, \lambda_2, \lambda_3 \in (0,1)$ are hyper-parameters, and λ_1 + 298 $\lambda_2 + \lambda_3 = 1$. CFA_{i,j} refers to cross-frame attention between 299 frames x_i and x_j . They jointly control the participation of the 300 initial frame x_0 , the current frame x_i and the preceding frame 301 x_{i-1} in the DC Attention calculation. In the experiment, we 302 set $\lambda_1 = 0.7$ and $\lambda_2 = \lambda_3 = 0.15$ to enable the frame x_0 ³⁰³ to be more involved in the spatial correlation control of the ³⁰⁴ current frame for the sake of better appearance preservation. Apart from this, retaining a relatively small portion of fea- ³⁰⁵ ture interaction for the current frame and the preceding frame 306 simultaneously is promised to enhance motion stability and 307 improve temporal coherence of the generated animation. 308

Furthermore, it is vital to note that we do not replace all 309 the U-Net transformer blocks with DCAM. We find that in- ³¹⁰ corporating the DC Attention only in the upsampling blocks 311 of the U-Net architecture while leaving the remaining un- ³¹² changed allows us to maintain consistency with the identity 313 and background details of the source, without compromising 314 the current frame's pose and layout. 315

3.4 Mask-Guided Decoupling Module 316

Directly utilizing the entire image features for attention fu-
317 sion can lead to substantial loss of fine-grained details. To 318 address this problem, we propose the mask-guided decou- ³¹⁹ pling module, which decouples the character and background 320 and enables individual inter-frame interaction to further refine 321 spatial feature perception. 322

For the source image I_s , we obtain a precise body mask 323 M_s (i.e. M_{x_0}) that separates the character from the back- 324 [g](#page-7-18)round by an off-the-shelf segmentation model [Liu *[et al.](#page-7-18)*, ³²⁵ [2023a\]](#page-7-18). The target pose prior is insufficient to derive body ³²⁶ mask for each generated frame of the character. Considering 327 the strong semantic alignment capability of cross attention ³²⁸ layers mentioned in Prompt-to-prompt [Hertz *et al.*[, 2022\]](#page-7-19), 329 we extract the corresponding body mask M_{x_i} for each frame 330 from the cross attention maps. With M_s and M_{x_i} , only attentions of character and background within corresponding 332 region are calculated, according to the mask-guided decou- ³³³ pling module as follows: 334

$$
\begin{aligned}\n\mathbf{K}_j^c &= M_{x_j} \odot \mathbf{K}_j, \mathbf{K}_j^b = (1 - M_{x_j}) \odot \mathbf{K}_j \\
\mathbf{V}_j^c &= M_{x_j} \odot \mathbf{V}_j, \mathbf{V}_j^b = (1 - M_{x_j}) \odot \mathbf{V}_j \\
\mathbf{CFA}_{i,j}^c &= \text{Attention}(Q^i, K_j^c, V_j^c), \\
\mathbf{CFA}_{i,j}^b &= \text{Attention}(Q^i, K_j^b, V_j^b),\n\end{aligned}
$$
\n(8)

where $\text{CFA}_{i,j}^c$ is the attention output in character between 335 frame x_i and x_j , and CFA $_{i,j}^b$ is for the background. Then 336 we can get the final DC Attention output: 337

$$
DCA_i^c = \lambda_1 * CFA_{i,0}^c + \lambda_2 * CFA_{i,i-1}^c + \lambda_3 * CFA_{i,i}^c
$$

\n
$$
DCA_i^b = \lambda_1 * CFA_{i,0}^b + \lambda_2 * CFA_{i,i-1}^b + \lambda_3 * CFA_{i,i}^b
$$
 (9)
\n
$$
DCA_i = M_{x_i} \odot DCA_i^c + (1 - M_{x_i}) \odot DCA_i^b,
$$

for $i = 1, ..., N$. The proposed decoupling module introduces explicit learning boundary between the character and 339 background, allowing the network to focus on their respective 340 content independently rather than blending features. Conse- ³⁴¹ quently, the intricate details of both the character and back- ³⁴² ground are preserved, leading to a substantial improvement in 343 the fidelity of the animation. 344

4 Experiment 345

4.1 Experiment Settings 346

We implement PoseAnimate based on the pre-trained weights 347 of ControlNet [Zhang *et al.*[, 2023\]](#page-8-15) and Stable Diffu- ³⁴⁸

Figure 4: Qualitative comparison between our PoseAnimate and other training-based state-of-the-art character animation methods. We overlay the corresponding DensePose on the bottom right corner of the MagicAnimate(Densepose) synthesized frames. Previous methods suffer from inconsistent character appearance and details lost. Source prompt: "A firefighters in the smoke."(left)"A boy in the street."(right).

³⁴⁹ sion [\[Rombach](#page-8-8) *et al.*, 2022] v1.5. For each generated char-350 acter animation, we generate $N = 16$ frames with a unified 351×512 resolution. All experiments are performed on a ³⁵² single NVIDIA A100 GPU.

³⁵³ 4.2 Comparison Result

 We compare our PoseAnimate with several state-of-the-art [m](#page-8-10)ethods for character animation: MagicAnimate [Xu *[et al.](#page-8-10)*, [2023\]](#page-8-10) and Disco [Wang *et al.*[, 2023a\]](#page-8-9). For MagicAnimate, 357 both densepose [Güler *et al.*[, 2018\]](#page-7-20) and openpose signals of the same motion are applied to evaluate performances. We leverage the official open source code of disco to test its ef- fectiveness. Additionally, we construct a competitive charac- ter animation baseline by IP-Adapter [Ye *et al.*[, 2023\]](#page-8-18) with ControlNet [Zhang *et al.*[, 2023\]](#page-8-15) and spatio-temporal atten- tion [Wu *et al.*[, 2023\]](#page-8-19), which is termed as IP+CtrlN. It is worth noting that these methods are all training based, while

ours does not require training. 365

Qualitative Results. We set up two different levels of pose ³⁶⁶ for experiments to fully demonstrate the superiority of our 367 method. The visual comparison results are shown in Fig. [4,](#page-5-0) ³⁶⁸ with the left side displaying simple actions and the right side 369 complex actions. Although IP+CtrlN has good performance 370 on identity preservation, it fails to maintain details and inter- ³⁷¹ frame consistency. Disco loses the character appearance com- ³⁷² pletely, and severe frame jitter leads to ghosting shadows and 373 visual collapse for complex actions. MagicAnimate performs ³⁷⁴ better than the other two methods, but it still encounters in- ³⁷⁵ consistencies in character appearance at a more fine-grinded 376 level guided by Densepose. It is also unable to preserve back- ³⁷⁷ ground and character details accurately, e.g. vehicle textures 378 and mask of firefighter and the boy in Fig. [4.](#page-5-0) MagicAnimate 379 under OpenPose signal conditions has worse performances 380

Figure 5: Ablation study. Source prompt: "An iron man on the road."

Table 1: Quantitative comparison between our PoseAnimate and other training-based state-of-the-art methods. The best average performance is in bold. ↑ indicates higher metric value and represents better performance and vice versa.

 than that under DensePose. While our method exhibits the best performance on image fidelity to the source image, and effectively preserves complex fine-grained appearance details and temporal consistency.

 Quantitative Results. For quantitative analysis, we ran- domly sample 50 in-the-wild image-text pairs and 10 differ- ent disered pose sequences to conduct evaluations. We adopt four evaluation metrics: (1) LPIPS [\[Zhang](#page-8-20) *et al.*, 2018] mea- sures the fidelity between generated frames and source im- age. (2) CLIP-I [Ye *et al.*[, 2023\]](#page-8-18) represents the similarity of CLIP [\[Radford](#page-8-13) *et al.*, 2021] image embedding between generated frames and the source image. (3) Frame Consis- tency(FC) [Esser *et al.*[, 2023\]](#page-7-6) evaluates video continuity by computing the average CLIP cosine similarity of two con-secutive frames. (4) Warping Error(WE) [Liu *et al.*[, 2023b\]](#page-7-21) evaluates the temporal consistency of the generated animation 396 through the Optical Flow algorithm [\[Teed and Deng, 2020\]](#page-8-21). ³⁹⁷

Quantitative results are provided in Table. [1.](#page-6-0) Our method ³⁹⁸ achieves the best scores on LPIPS and CLIP-I and greatly sur- ³⁹⁹ passes other comparison methods in terms of fidelity to the ⁴⁰⁰ source image, demonstrating outstanding detail preservation 401 capability. In addition, PoseAnimate outperforms the other ⁴⁰² two training-based methods in terms of inter-frame consis- ⁴⁰³ tency. A good Warping Error score is also achieved, illustrat- ⁴⁰⁴ ing that our method is able to maintain good temporal coher- ⁴⁰⁵ ence without additional training. 406

4.3 Ablation Study 407

We conduct ablation study to verify effectiveness of each 408 component of our framework and present results in Fig. [5.](#page-6-1) ⁴⁰⁹ The leftmost one in the first row is the source image, and 410 the others are the target pose sequences. The following rows 411 are generation results without certain components: (a) Pose- ⁴¹² Aware Control Module (PACM) that effectively removes the 413 interference of character original pose and maintains consis- ⁴¹⁴ tency of content unrelated to character; (b) Dual Consistency 415 Attention Module (DCAM) that maintains image fidelity to 416 the source image and improves temporal consistency; (c) ⁴¹⁷ Masked-Guided Decoupling Module (MGDM) that preserves 418 image details; and (d) Pose Alignment Transition Algorithm 419 (PATA) that tackles the issue of misalignments. ⁴²⁰

PACM. Fig. $5(a)$ illustrates the significant interference of 421 original pose on the generated actions. Due to the substan- ⁴²² tial difference between the posture of Iron Man's legs in the 423 source and in the target, there is a severe breakdown in the leg 424 area of the generated frame, undermining the generation of a ⁴²⁵ reasonable target action. Moreover, the character-irrelevant ⁴²⁶ scenes also have noticeable distortion. 427

DCAM. From Fig. [5\(](#page-6-1)b) we can find that it fails to maintain content consistency without Dual Consistency Attention 429 Module. And the missing pole and Iron Man's hand in the red 430 box reveal inter-frame inconsistency, indicating that both spa- ⁴³¹ tial and temporal content cannot be effectively maintained. 432

MGDM. Compared with our results in Fig. [5\(](#page-6-1)e), we can observe that small signs are missing without MGDM. It proves 434 that Masked-Guided Decoupling Module can effectively en- ⁴³⁵ hance the fine-grained feature perception and image fidelity. 436

PATA. Fig. [5\(](#page-6-1)d) verifies the proposed Pose Alignment 437 Transition Algorithm. The red circles in the first frame indi- ⁴³⁸ cate the spatial content misalignment. When Iron Man in the 439 original image does not match with the input pose position, ⁴⁴⁰ an extra tree appears in the original position of Iron Man. And 441 such misalignment can also leads to disappearance of back- ⁴⁴² ground details, e.g., streetlights and distant signage. ⁴⁴³

5 Conclusion ⁴⁴⁴

This paper proposes a novel zero-shot approach PoseAni- ⁴⁴⁵ mate to tackle the task of character animation for the first ⁴⁴⁶ time. PoseAnimate can generate temproal coherent and high- ⁴⁴⁷ fidelity animations for arbitrary images under various pose 448 sequences. Extensive experiment results demonstrate that 449 PoseAnimate outperforms the state-of-the-art training based 450 methods in terms of character consistency and detail fidelity. 451

⁴⁵² References

- ⁴⁵³ [Blattmann *et al.*, 2023a] Andreas Blattmann, Tim Dock-⁴⁵⁴ horn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, ⁴⁵⁵ Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti,
- ⁴⁵⁶ Adam Letts, et al. Stable video diffusion: Scaling latent
- ⁴⁵⁷ video diffusion models to large datasets. *arXiv preprint* ⁴⁵⁸ *arXiv:2311.15127*, 2023.
- ⁴⁵⁹ [Blattmann *et al.*, 2023b] Andreas Blattmann, Robin Rom-⁴⁶⁰ bach, Huan Ling, Tim Dockhorn, Seung Wook Kim, ⁴⁶¹ Sanja Fidler, and Karsten Kreis. Align your latents:
- ⁴⁶² High-resolution video synthesis with latent diffusion mod-
- ⁴⁶³ els. In *Proceedings of the IEEE/CVF Conference on*
- ⁴⁶⁴ *Computer Vision and Pattern Recognition*, pages 22563– ⁴⁶⁵ 22575, 2023.
- ⁴⁶⁶ [Chan *et al.*, 2019] Caroline Chan, Shiry Ginosar, Tinghui
- ⁴⁶⁷ Zhou, and Alexei A Efros. Everybody dance now. In ⁴⁶⁸ *Proceedings of the IEEE/CVF international conference on* ⁴⁶⁹ *computer vision*, pages 5933–5942, 2019.
- ⁴⁷⁰ [Chen *et al.*, 2023] Haoxin Chen, Menghan Xia, Yingqing ⁴⁷¹ He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo ⁴⁷² Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. ⁴⁷³ Videocrafter1: Open diffusion models for high-quality
- ⁴⁷⁴ video generation. *arXiv preprint arXiv:2310.19512*, 2023.
- ⁴⁷⁵ [Esser *et al.*, 2023] Patrick Esser, Johnathan Chiu, Parmida ⁴⁷⁶ Atighehchian, Jonathan Granskog, and Anastasis Ger-⁴⁷⁷ manidis. Structure and content-guided video synthesis ⁴⁷⁸ with diffusion models. In *Proceedings of the IEEE/CVF* ⁴⁷⁹ *International Conference on Computer Vision*, pages ⁴⁸⁰ 7346–7356, 2023.
- ⁴⁸¹ [Ge *et al.*, 2023] Songwei Ge, Seungjun Nah, Guilin Liu, ⁴⁸² Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs, ⁴⁸³ Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Pre-⁴⁸⁴ serve your own correlation: A noise prior for video dif-⁴⁸⁵ fusion models. In *Proceedings of the IEEE/CVF Inter-*⁴⁸⁶ *national Conference on Computer Vision*, pages 22930– ⁴⁸⁷ 22941, 2023.
- ⁴⁸⁸ [Goodfellow *et al.*, 2014] Ian Goodfellow, Jean Pouget-⁴⁸⁹ Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, ⁴⁹⁰ Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-⁴⁹¹ erative adversarial nets. *Advances in neural information* ⁴⁹² *processing systems*, 27, 2014.
- ⁴⁹³ [Gu *et al.*, 2023] Jiaxi Gu, Shicong Wang, Haoyu Zhao, ⁴⁹⁴ Tianyi Lu, Xing Zhang, Zuxuan Wu, Songcen Xu, Wei ⁴⁹⁵ Zhang, Yu-Gang Jiang, and Hang Xu. Reuse and diffuse: ⁴⁹⁶ Iterative denoising for text-to-video generation. *arXiv* ⁴⁹⁷ *preprint arXiv:2309.03549*, 2023.
- 498 [Güler *et al.*, 2018] Riza Alp Güler, Natalia Neverova, and ⁴⁹⁹ Iasonas Kokkinos. Densepose: Dense human pose estima-⁵⁰⁰ tion in the wild. In *Proceedings of the IEEE conference* ⁵⁰¹ *on computer vision and pattern recognition*, pages 7297– ⁵⁰² 7306, 2018.
- ⁵⁰³ [He *et al.*, 2022] Yingqing He, Tianyu Yang, Yong Zhang, ⁵⁰⁴ Ying Shan, and Qifeng Chen. Latent video diffusion ⁵⁰⁵ models for high-fidelity video generation with arbitrary ⁵⁰⁶ lengths. *arXiv preprint arXiv:2211.13221*, 2022.
- [Hertz *et al.*, 2022] Amir Hertz, Ron Mokady, Jay Tenen- 507 baum, Kfir Aberman, Yael Pritch, and Daniel Cohen-or. ⁵⁰⁸ Prompt-to-prompt image editing with cross-attention con- ⁵⁰⁹ trol. In *The Eleventh International Conference on Learn-* ⁵¹⁰ *ing Representations*, 2022. 511
- [Ho and Salimans, 2022] Jonathan Ho and Tim Salimans. ⁵¹² Classifier-free diffusion guidance. *arXiv preprint* ⁵¹³ *arXiv:2207.12598*, 2022. ⁵¹⁴
- [Ho *et al.*, 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 515 Denoising diffusion probabilistic models. *Advances in* ⁵¹⁶ *neural information processing systems*, 33:6840–6851, ⁵¹⁷ $2020.$ 518
- [Ho *et al.*, 2022] Jonathan Ho, William Chan, Chitwan 519 Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, ⁵²⁰ Diederik P Kingma, Ben Poole, Mohammad Norouzi, ⁵²¹ David J Fleet, et al. Imagen video: High definition 522 video generation with diffusion models. *arXiv preprint* ⁵²³ *arXiv:2210.02303*, 2022. ⁵²⁴
- [Hu et al., 2023] Li Hu, Xin Gao, Peng Zhang, Ke Sun, Bang 525 Zhang, and Liefeng Bo. Animate anyone: Consistent and 526 controllable image-to-video synthesis for character anima- ⁵²⁷ tion. *arXiv preprint arXiv:2311.17117*, 2023.
- [Karras *et al.*, 2019] Tero Karras, Samuli Laine, and Timo 529 Aila. A style-based generator architecture for generative 530 adversarial networks. In *Proceedings of the IEEE/CVF* ⁵³¹ *conference on computer vision and pattern recognition*, ⁵³² pages 4401–4410, 2019. 533
- [Karras *et al.*, 2023] Johanna Karras, Aleksander Holyn- ⁵³⁴ ski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman. ⁵³⁵ Dreampose: Fashion image-to-video synthesis via stable 536 diffusion. *arXiv preprint arXiv:2304.06025*, 2023. ⁵³⁷
- [Liu *et al.*, 2023a] Peng Liu, Fanyi Wang, Jingwen Su, Yan- ⁵³⁸ hao Zhang, and Guojun Qi. Lightweight high-resolution 539 subject matting in the real world. *arXiv preprint* ⁵⁴⁰ *arXiv:2312.07100*, 2023. ⁵⁴¹
- [Liu et al., 2023b] Yaofang Liu, Xiaodong Cun, Xuebo Liu, 542 Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu, Tiey- ⁵⁴³ ong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: ⁵⁴⁴ Benchmarking and evaluating large video generation mod- ⁵⁴⁵ els. *arXiv preprint arXiv:2310.11440*, 2023. ⁵⁴⁶
- [Ma *et al.*, 2023] Yue Ma, Yingqing He, Xiaodong Cun, 547 Xintao Wang, Ying Shan, Xiu Li, and Qifeng Chen. Fol- ⁵⁴⁸ low your pose: Pose-guided text-to-video generation using 549 pose-free videos. *arXiv preprint arXiv:2304.01186*, 2023. ⁵⁵⁰
- [Mokady et al., 2023] Ron Mokady, Amir Hertz, Kfir Aber- 551 man, Yael Pritch, and Daniel Cohen-Or. Null-text inver- ⁵⁵² sion for editing real images using guided diffusion models. ⁵⁵³ In *Proceedings of the IEEE/CVF Conference on Computer* ⁵⁵⁴ *Vision and Pattern Recognition*, pages 6038–6047, 2023. ⁵⁵⁵
- [Ni *et al.*, 2022] Bolin Ni, Houwen Peng, Minghao Chen, ⁵⁵⁶ Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming 557 Xiang, and Haibin Ling. Expanding language-image pre- ⁵⁵⁸ trained models for general video recognition. In *European* ⁵⁵⁹ *Conference on Computer Vision*, pages 1–18. Springer, ⁵⁶⁰ 2022. ⁵⁶¹

 [Nikankin *et al.*, 2022] Yaniv Nikankin, Niv Haim, and Michal Irani. Sinfusion: Training diffusion models on a single image or video. *arXiv preprint arXiv:2211.11743*, ⁵⁶⁵ 2022.

⁵⁶⁶ [Radford *et al.*, 2021] Alec Radford, Jong Wook Kim, Chris ⁵⁶⁷ Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-⁵⁶⁸ wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack

⁵⁶⁹ Clark, et al. Learning transferable visual models from nat-⁵⁷⁰ ural language supervision. In *International conference on*

⁵⁷¹ *machine learning*, pages 8748–8763. PMLR, 2021.

- ⁵⁷² [Ren *et al.*, 2020] Yurui Ren, Ge Li, Shan Liu, and ⁵⁷³ Thomas H Li. Deep spatial transformation for pose-guided ⁵⁷⁴ person image generation and animation. *IEEE Transac-*⁵⁷⁵ *tions on Image Processing*, 29:8622–8635, 2020.
- ⁵⁷⁶ [Rombach *et al.*, 2022] Robin Rombach, Andreas 577 Blattmann, Dominik Lorenz, Patrick Esser, and Björn ⁵⁷⁸ Ommer. High-resolution image synthesis with latent ⁵⁷⁹ diffusion models. In *Proceedings of the IEEE/CVF* ⁵⁸⁰ *conference on computer vision and pattern recognition*, ⁵⁸¹ pages 10684–10695, 2022.
- ⁵⁸² [Ronneberger *et al.*, 2015] Olaf Ronneberger, Philipp Fis-⁵⁸³ cher, and Thomas Brox. U-net: Convolutional networks ⁵⁸⁴ for biomedical image segmentation. In *Medical Image* ⁵⁸⁵ *Computing and Computer-Assisted Intervention–MICCAI* ⁵⁸⁶ *2015: 18th International Conference, Munich, Germany,* ⁵⁸⁷ *October 5-9, 2015, Proceedings, Part III 18*, pages 234–
- ⁵⁸⁸ 241. Springer, 2015. ⁵⁸⁹ [Siarohin *et al.*, 2019a] Aliaksandr Siarohin, Stephane Lath- ´

 uiliere, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. An- ` imating arbitrary objects via deep motion transfer. In *Pro- ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2377–2386, 2019.

⁵⁹⁴ [Siarohin *et al.*, 2019b] Aliaksandr Siarohin, Stephane Lath- ´

⁵⁹⁵ uiliere, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First ` ⁵⁹⁶ order motion model for image animation. *Advances in* ⁵⁹⁷ *neural information processing systems*, 32, 2019.

 [Siarohin *et al.*, 2021] Aliaksandr Siarohin, Oliver J Wood- ford, Jian Ren, Menglei Chai, and Sergey Tulyakov. Mo- tion representations for articulated animation. In *Proceed-ings of the IEEE/CVF Conference on Computer Vision and*

⁶⁰² *Pattern Recognition*, pages 13653–13662, 2021.

- ⁶⁰³ [Song *et al.*, 2020] Jiaming Song, Chenlin Meng, and Ste-⁶⁰⁴ fano Ermon. Denoising diffusion implicit models. *arXiv* ⁶⁰⁵ *preprint arXiv:2010.02502*, 2020.
- ⁶⁰⁶ [Teed and Deng, 2020] Zachary Teed and Jia Deng. Raft: ⁶⁰⁷ Recurrent all-pairs field transforms for optical flow. In ⁶⁰⁸ *Computer Vision–ECCV 2020: 16th European Confer-*⁶⁰⁹ *ence, Glasgow, UK, August 23–28, 2020, Proceedings,*
- ⁶¹⁰ *Part II 16*, pages 402–419. Springer, 2020.

 [Wang *et al.*, 2022] Yaohui Wang, Di Yang, Francois Bre- mond, and Antitza Dantcheva. Latent image animator: Learning to animate images via latent space navigation. *arXiv preprint arXiv:2203.09043*, 2022.

⁶¹⁵ [Wang *et al.*, 2023a] Tan Wang, Linjie Li, Kevin Lin, Yuan-⁶¹⁶ hao Zhai, Chung-Ching Lin, Zhengyuan Yang, Hanwang

Zhang, Zicheng Liu, and Lijuan Wang. Disco: Disentan- ⁶¹⁷ gled control for realistic human dance generation. *arXiv* 618 *preprint arXiv:2307.00040, 2023.* 619

- [Wang *et al.*, 2023b] Xiang Wang, Hangjie Yuan, Shiwei ⁶²⁰ Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yu- ⁶²¹ jun Shen, Deli Zhao, and Jingren Zhou. Videocomposer: ⁶²² Compositional video synthesis with motion controllability. 623 *arXiv preprint arXiv:2306.02018*, 2023. ⁶²⁴
- [Wu *et al.*, 2023] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, ⁶²⁵ Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, ⁶²⁶ Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a- ⁶²⁷ video: One-shot tuning of image diffusion models for text- ⁶²⁸ to-video generation. In *Proceedings of the IEEE/CVF In-* ⁶²⁹ *ternational Conference on Computer Vision*, pages 7623– ⁶³⁰ 7633, 2023. ⁶³¹
- [Xu *et al.*, 2023] Zhongcong Xu, Jianfeng Zhang, Jun Hao 632 Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi ⁶³³ Feng, and Mike Zheng Shou. Magicanimate: Temporally 634 consistent human image animation using diffusion model. ⁶³⁵ *arXiv preprint arXiv:2311.16498*, 2023. ⁶³⁶
- [Yang et al., 2023] Ruihan Yang, Prakhar Srivastava, and 637 Stephan Mandt. Diffusion probabilistic modeling for ⁶³⁸ video generation. *Entropy*, 25(10):1469, 2023. 639
- [Ye *et al.*, 2023] Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and 640 Wei Yang. Ip-adapter: Text compatible image prompt 641 adapter for text-to-image diffusion models. *arXiv preprint* ⁶⁴² *arXiv:2308.06721*, 2023. ⁶⁴³
- [Zhang et al., 2018] Richard Zhang, Phillip Isola, Alexei A 644 Efros, Eli Shechtman, and Oliver Wang. The unreasonable 645 effectiveness of deep features as a perceptual metric. In 646 *Proceedings of the IEEE conference on computer vision* ⁶⁴⁷ *and pattern recognition*, pages 586–595, 2018.
- [Zhang *et al.*, 2022] Pengze Zhang, Lingxiao Yang, Jian- ⁶⁴⁹ Huang Lai, and Xiaohua Xie. Exploring dual-task correla- ⁶⁵⁰ tion for pose guided person image generation. In *Proceed-* ⁶⁵¹ *ings of the IEEE/CVF Conference on Computer Vision and* ⁶⁵² *Pattern Recognition*, pages 7713–7722, 2022. 653
- [Zhang et al., 2023] Lvmin Zhang, Anyi Rao, and Maneesh 654 Agrawala. Adding conditional control to text-to-image dif- ⁶⁵⁵ fusion models. In *Proceedings of the IEEE/CVF Interna-* ⁶⁵⁶ *tional Conference on Computer Vision*, pages 3836–3847, ⁶⁵⁷ 2023. ⁶⁵⁸
- [Zhao and Zhang, 2022] Jian Zhao and Hui Zhang. Thin- ⁶⁵⁹ plate spline motion model for image animation. In *Pro-* ⁶⁶⁰ $ceedings of the IEEE/CVF Conference on Computer Vision 661$ *and Pattern Recognition*, pages 3657–3666, 2022. 662
- [Zhu *et al.*, 2017] Jun-Yan Zhu, Taesung Park, Phillip Isola, 663 and Alexei A Efros. Unpaired image-to-image translation 664 using cycle-consistent adversarial networks. In *Proceed-* ⁶⁶⁵ *ings of the IEEE international conference on computer vi-* ⁶⁶⁶ *sion*, pages 2223–2232, 2017.