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Figure 1: Our PoseAnimate framework is capable of generating smooth and high-quality character animations for character images across
various pose sequences.

Abstract

Image-to-video(I2V) generation aims to create a1

video sequence from a single image, which requires2

high temporal coherence and visual fidelity with3

the source image. However, existing approaches4

suffer from character appearance inconsistency and5

poor preservation of fine details. Moreover, they6

require a large amount of video data for training,7

which can be computationally demanding. To ad-8

dress these limitations, we propose PoseAnimate,9

a novel zero-shot I2V framework for character an- 10

imation. PoseAnimate contains three key compo- 11

nents: 1) Pose-Aware Control Module (PACM) in- 12

corporates diverse pose signals into conditional em- 13

beddings, to preserve character-independent con- 14

tent and maintain precise alignment of actions. 2) 15

Dual Consistency Attention Module (DCAM) en- 16

hances temporal consistency, and retains character 17

identity and intricate background details. 3) Mask- 18

Guided Decoupling Module (MGDM) refines dis- 19

tinct feature perception, improving animation fi- 20



delity by decoupling the character and background.21

We also propose a Pose Alignment Transition Al-22

gorithm (PATA) to ensure smooth action transition.23

Extensive experiment results demonstrate that our24

approach outperforms the state-of-the-art training-25

based methods in terms of character consistency26

and detail fidelity. Moreover, it maintains a high27

level of temporal coherence throughout the gener-28

ated animations.29

1 Introduction30

Image animation [Siarohin et al., 2019b; Siarohin et al.,31

2019a; Siarohin et al., 2021; Wang et al., 2022; Zhao and32

Zhang, 2022] is a task that brings life into static images33

by seamlessly transforming them into dynamic and realistic34

videos. It involves the transformation of still images into35

a sequence of frames that exhibit smooth and coherent mo-36

tions. In this task, character animation has gained significant37

attention due to its valuable applications in various scenar-38

ios, such as television production, game development, online39

retail and artistic creation, etc. However, minor motion varia-40

tions hardly meet with the requirements. The goal of charac-41

ter animation is to make the character in image perform target42

pose sequences, while maintaining identity consistency and43

visual coherence. In early works, most of character animation44

were driven by traditional animation techniques, which in-45

volves meticulous frame-by-frame drawing or manipulation.46

In the subsequent era of deep learning, the advent of gen-47

erative models [Goodfellow et al., 2014; Zhu et al., 2017;48

Karras et al., 2019] drove the shift towards data-driven and49

automated approaches [Ren et al., 2020; Chan et al., 2019;50

Zhang et al., 2022]. However, there are still ongoing chal-51

lenges in achieving highly realistic and visually consistent52

animations, especially when dealing with complex motions,53

fine-grained details, and long-term temporal coherence.54

Recently, diffusion models [Ho et al., 2020] have demon-55

strated groundbreaking generative capabilities. Driven by56

the open source text-to-image diffusion model Stable Diffu-57

sion [Rombach et al., 2022], the realm of video generation58

has achieved unprecedented progress in terms of visual qual-59

ity and content richness. Hence, several endeavors [Wang60

et al., 2023a; Xu et al., 2023; Hu et al., 2023] have sought61

to extrapolate the text-to-video(T2V) methods to image-to-62

video(I2V) by training additional image feature preserving63

networks and adapt them to the task of character animation.64

Nevertheless, these training-based methods do not possess65

accurate feature preservation capabilities for arbitrary open-66

domain images, and suffer from notable deficiencies in ap-67

pearance control and loss of fine details. Furthermore, they68

require additional training data and computational overhead.69

To this end, we contemplate employing a more refined and70

efficient resolution, image reconstruction for feature preser-71

vation, to tackle this problem. We propose PoseAnimate, de-72

picted in Fig. 2, a zero-shot reconstruction-based I2V frame-73

work for pose controllable character animation video gener-74

ation. PoseAnimate introduces a pose-aware control mod-75

ule(PACM), shown in Fig. 3 which optimizes the text embed-76

ding twice based on the original and target pose conditions77

respectively finally resulting a unique pose-aware embedding 78

for each generated frame. This optimization strategy allows 79

for the generated actions aligned to the target pose while con- 80

tributing to keep the character-independent scene consistent. 81

However, the introduction of a new target pose in the second 82

optimization, which differs from the original pose, inevitably 83

undermines the reconstruction of the character’s identity and 84

background. Thus, we further devise a dual consistency atten- 85

tion module(DCAM), as dedicated in the right part of Fig. 2, 86

to address the disruption, in addition to maintain a smooth 87

temporal progression. Since directly employing the entire at- 88

tention map or key for attention fusion may result in the loss 89

of fine-grained detail perception. We propose a mask-guided 90

decoupling module(MGDM) to enable independent and fo- 91

cused spatial attention fusion for both the character and back- 92

ground. As such, our framework promises to capture the in- 93

tricate character and background details, thereby effectively 94

enhancing the fidelity of the animation. Besides, for the sake 95

of adaptation to various scales and positions of target pose 96

sequences, a pose alignment transition algorithm(PATA) is 97

designed to ensure pose alignment and smooth transitions. 98

Through combination of these novel modules, PoseAnimate 99

achieves promising character animation results, as shown in 100

Fig. 1, in a more efficient manner with lower computational 101

overhead. 102

To summarize, our contributions are as follows: 1) We 103

pioneer a reconstruction-based approach to handle the task 104

of character animation and propose PoseAnimate, a novel 105

zero-shot framework, which generates coherent high-quality 106

videos for arbitrary character images under various pose se- 107

quences, without any training of the network. To the best of 108

our knowledge, we are the first to explore a training-free ap- 109

proach to character animation. 2) We propose a pose-aware 110

control module that enables precise alignment of actions 111

while maintaining consistency across character-independent 112

scenes. 3) We decouple the character and the background 113

regions, performing independent inter-frame attention fusion 114

for them, which significantly enhances visual fidelity. 4) Ex- 115

periment results demonstrate the superiority of PoseAnimate 116

compared with the state-of-the-art training-based methods in 117

terms of character consistency and image fidelity. 118

2 Related work 119

2.1 Diffusion Models for Video Generation 120

Image generation has made significant progress due to the 121

advancement of Diffusion Models(DMs) [Ho et al., 2020]. 122

Motivated by DM-based image generation [Rombach et al., 123

2022], some works [Yang et al., 2023; Ho et al., 2022; 124

Nikankin et al., 2022; Esser et al., 2023; Blattmann et al., 125

2023b] explore DMs for video generation. Most video gen- 126

eration methods incorporate temporal modules to pretrained 127

image diffusion models, extending 2D U-Net to 3D U-Net. 128

Recent works control the generation of videos with mul- 129

tiple conditions. For text-guided video generation, these 130

works [He et al., 2022; Ge et al., 2023; Gu et al., 2023] usu- 131

ally tokenize text prompts with a pretrained image-language 132

model, such as CLIP [Radford et al., 2021], to control video 133

generation through cross-attention. Due to the imperfect 134



alignment between language and visual modalities in existing135

image-language models, text-guided video generation can’t136

achieve high textual alignment. Alternative methods [Wang et137

al., 2023b; Chen et al., 2023; Blattmann et al., 2023a] employ138

images as guidance for video generation. These works en-139

code reference images to text token space, which benefits cap-140

turing visual semantic information. VideoComposer[Wang141

et al., 2023b] combines textual conditions, spatial condi-142

tions(e.g., depth, sketch, reference image) and temporal con-143

ditions(e.g., motion vector) through Spatio-Temporal Condi-144

tion encoders. VideoCrafter1[Chen et al., 2023] introduces145

a text-aligned rich image embedding to capture details both146

from text prompts and reference images. Stable Video Dif-147

fusion [Blattmann et al., 2023a] is a latent diffusion model148

for high-resolution T2V and I2V generation, which sets three149

different stages for training: text-to-image pretraining, video150

pretraining, and high-quality video finetuning.151

2.2 Video Generation with Human Pose152

Generating videos with human pose is currently a popu-153

lar task. Compared to other conditions, human pose can154

better guide the synthesis of motions in videos, which en-155

sures good temporal consistency. Follow your pose[Ma et156

al., 2023] introduces a two-stage method to generate pose-157

controllable character videos. Many studies [Wang et al.,158

2023a; Karras et al., 2023; Xu et al., 2023; Hu et al., 2023]159

try to generate character videos from still images via pose se-160

quence, which needs to preserve consistency of appearance161

from source images as well. Inspired by ControlNet[Zhang162

et al., 2023], DisCo[Wang et al., 2023a] realizes disentan-163

gled control of human foreground, background and pose,164

which enables faithful human video generation. To increase165

fidelity to the reference human images, DreamPose[Karras166

et al., 2023] proposes an adapter to models CLIP and VAE167

image embeddings. MagicAnimate[Xu et al., 2023] adopts168

ControlNet[Zhang et al., 2023] to extract motion conditions.169

It also introduces a appearance encoder to model reference170

images embedding. Animate Anyone[Hu et al., 2023] de-171

signs a ReferenceNet to extract detail features from reference172

images, combined with a pose guider to guarantee motion173

generation.174

3 Method175

Given a source character image Is, and a desired pose se-176

quence P = {pi}Mi=1, where M is the length of sequence. In177

the generated animation, we adopt a progressive approach to178

transition the character seamlessly from the original pose ps179

to the desired pose sequence P = {pi}Mi=1. We first facilitate180

the Pose Alignment Transition Algorithm(PATA), derailed in181

supplementary material, to smoothly interpolate t intermedi-182

ate frames between the source pose ps and the target pose183

sequence P = {pi}Mi=1. Simultaneously, it aligns each target184

pose pi with the source pose ps to compensate for their dis-185

crepancies in terms of position and scale. As a result, the final186

target pose sequence is P = {pi}Ni=0, where N = M + t. It187

is worth noting that the first frame x0 in our generated an-188

imation X = {xi}Ni=0 is identical to the source image Is.189

Secondly, we propose a pose-aware control module(PACM)190

that optimizes a unique pose-aware embedding for each gen- 191

erated frame. This module can eliminate perturbation of orig- 192

inal character posture, thereby ensuring the generated actions 193

aligned with the target pose. Furthermore, it also maintains 194

consistency of content irrelevant to characters. Thirdly, a dual 195

consistency attention module(DCAM) is developed to ensure 196

consistency of the character identity and improve temporal 197

consistency. In addition, we design a mask-guided decou- 198

pling module(MGDM) to further enhance perception of char- 199

acters and backgrounds details. The overview of our PoseAn- 200

imate is shown in Fig. 2. 201

In this section, we first give an introduction of Stable Diffu- 202

sion in Sec 3.1. Subsequently, Sec 3.2 introduces the incorpo- 203

ration of motion awareness into pose-aware embedding. The 204

proposed dual consistency control is elaborated in Sec 3.3, 205

followed by mask-guided decoupling module in Sec 3.4. 206

3.1 Preliminaries on Stable Diffusion 207

Stable Diffusion [Rombach et al., 2022] has demonstrated 208

strong text-to-image generation ability through a diffusion 209

model in a latent space constructed by a pair of image en- 210

coder E and decoder D. For an input image I, the encoder E 211

first maps it to a lower dimensional latent code z0 = E(I), 212

then Gaussian noise is gradually added to z0 through the dif- 213

fusion forward process: 214

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI), (1)
where t = 1, ..., T , denotes the timesteps, βt ∈ (0, 1) is a 215

predefined noise schedule. Through a parameterization trick, 216

we can directly sample zt from z0: 217

q(zt|z0) = N (zt;
√
ᾱtz0, (1− ᾱt)I), (2)

where ᾱt =
∏t

i=1 αi, and αt = 1−βt. Diffusion model uses 218

a neural network ϵθ to learn to predict the added noise ϵ by 219

minimizing the mean square error of the predicted noise: 220

min
θ

Ez,ϵ∼N (0,I),t[∥ϵ− ϵθ(zt, t, c)∥22], (3)

where c is embedding of textual prompt. And we can adopt 221

a deterministic sampling process [Song et al., 2020] to itera- 222

tively recover z0 ∼ Pdata(z) from random noise zT : 223

zt−1 =
√
ᾱt−1 ẑt→0︸︷︷︸

predicted z0

+
√
1− ᾱt−1ϵθ(zt, t, c)︸ ︷︷ ︸

direction pointing to zt−1

, (4)

where ẑt→0 is the predicted z0 at timestep t, 224

ẑt→0 =
zt −

√
1− ᾱtϵθ(zt, t, c)√

ᾱt
. (5)

3.2 Pose-Aware Control Module 225

For generating a high fidelity character animation from a 226

source image, two tasks need to be accomplished. Firstly, 227

it is critical to preserve the consistency of original char- 228

acter and background in generated animation. In contrast 229

to other approaches [Karras et al., 2023; Xu et al., 2023; 230

Hu et al., 2023] that rely on training additional spatial 231

preservation networks for consistency identity, we achieve 232
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Figure 2: Overview of PoseAnimate. The pipeline is on the left, we first utilize the Pose Alignment Transition Algorithm(PATA) to align
the desired pose with a smooth transition to the target pose. We utilize the inversion noise of the source image as the starting point for
generation. The optimized pose-aware embedding of PACM, in Sec. 3.2, serves as the unconditional embedding for input. The right side
is the illustration of DCAM in Sec. 3.3. The attention block in this module consists of Dual Consistency Attention(DCA), Cross Attention
(CA), and Feed-Forward Networks (FFN). Within DCA, we integrate MGDM to independently perform inter-frame attention fusion for the
character and background, which further enhance the fidelity of fine-grained details.

it through a computationally efficient reconstruction-based233

method. Secondly, the actions in generated frames needs to234

align with the target poses. Although the pre-trained Open-235

Pose ControlNet [Zhang et al., 2023] has great spatial control236

capabilities in controllable condition synthesis, our purpose237

is to discard the original pose and generate new continuous238

motion. Therefore, directly introducing pose signals through239

ControlNet may result in conflicts with the original pose, re-240

sulting in severe ghosting and blurring in motion areas.241

In light of this, we propose the pose-aware control module,242

as illustrated in the Fig. 3. Inspired by the idea of inversion in243

image editing [Mokady et al., 2023], we achieve the percep-244

tion of pose signals by optimizing the text embedding ∅text245

twice based on the original pose ps and target pose pi respec-246

tively. In the first optimization, i.e. pose-aware inversion,247

we iteratively refine the original text embedding ∅text to ac-248

curately reconstruct the intricate details of the source image249

Is under the original pose ps. Building upon the optimized250

source embeddings {∅s,t}Tt=1 obtained from this process, we251

then proceed with the second optimization, i.e. pose-aware252

embedding optimization, where we inject the target pose sig-253

nals P = {pi}Ni=1 into the optimized pose-aware embed-254

dings {{∅̃xi,t}Tt=1}Ni=1, as detailed in Alg. 1. Perceiving255

the target pose signals, these optimized pose-aware embed-256

dings {{∅̃xi,t}Tt=1}Ni=1 ensure a flawless alignment between257

the generated character actions and the target poses, while258

upholding the consistency of character-independent content.259

Specifically, to incorporate the pose signals, we integrate260

ControlNet into all processes of the module. Diverging from261

null-text inversion [Mokady et al., 2023] that achieves image262

reconstruction by optimizing unconditional embeddings [Ho263

and Salimans, 2022], our pose-aware inversion optimizes the264

conditional embedding ∅text of text prompt C during the re-265

construction process. The motivation stems from the observa-266

tion that conditional embedding contains more abundant and267

robust semantic information, which endows it with a height-268

ened potential for encoding pose signals.269
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Figure 3: Illustration of pose-aware control module. We optimize
the text embedding twice to inject motion awareness into pose-aware
embedding.

3.3 Dual Consistency Attention Module 270

Although the pose-aware control module accurately captures 271

and injects body poses, it may unintentionally alter the iden- 272

tity of the character and the background details due to the 273

introduction of different pose signals, as demonstrated by the 274

example Z̃xi,0 in Fig. 3, which is undesirable. Since self- 275

attention layers in the U-Net [Ronneberger et al., 2015] play a 276

crucial role in controlling appearance, shape, and fine-grained 277

details, existing attention fusion paradigms commonly em- 278

ploy cross-frame attention mechanism [Ni et al., 2022], to 279



Algorithm 1 Pose-aware embedding optimization.
Input: Source character image Is, source character pose
ps, text prompt C, and target pose sequence P = {pi}Ni=1,
number of frames N, timestep T.
Output: Optimized source embeddings {∅s,t}Tt=1, Opti-
mized pose-aware embeddings {{∅̃xi,t}Tt=1}Ni=1 , and latent
code ZT .

1: Set guidance scale = 1.0. Calculate DDIM inversion la-
tent code Z0, ..., ZT corresponding to input image Is.

2: Set guidance scale = 7.5. Obtain optimized source
embeddings {∅s,t}Tt=1 through pose-aware inversion
(Fig. 3).

3: for i = 1, 2, ..., N do
4: Initialize Z̃xi,T = ZT , {∅̃xi,t}Tt=1 = {∅s,t}Tt=1;
5: for t = T, T − 1, ..., 1 do
6: Z̃xi,t−1 ← Sample(Z̃xi,t, ϵθ(Z̃xi,t, ∅̃xi,t, pi, C, t));

7: ∅̃xi,t ← ∅̃xi,t − η∇∅̃MSE(Zt−1, Z̃xi,t−1);
8: end for
9: end for

10: Return ZT , {∅s,t}Tt=1, {{∅̃xi,t}Tt=1}Ni=1

facilitate spatial information interaction across frames:280

Attention(Qi,Kj , V j) = softmax
(
Qi(Kj)⊤√

d

)
V j , (6)

where Qi is the query feature of frame xi, and Kj , V j cor-281

respond to the key feature and value feature of frame xj .282

As pose p1 is identical to the original pose ps, the recon-283

struction of frame x0 remains undisturbed, allowing for a284

perfect restoration of the source image Is. Hence, we can285

compute the cross-frame attention between each subsequent286

frame {xi}Ni=1 with the frame x0 to ensure the preservation of287

identity and intricate details. However, solely involving frame288

x0 in the attention fusion would bias the generated actions to-289

wards the original action, resulting in ghosting artifacts and290

flickering. Consequently, we develop the Dual Consistency291

Attention Module(DCAM) by replacing self-attention layers292

with our dual consistency attention(DC Attention) to address293

the issue of appearance inconsistency and improve temporal294

consistency. The DC Attention mechanism operates for each295

subsequent frame xi as follows:296

CFAi,j = Attention(Qi,Kj ,V j),

Dual Consistency Attention(xi) :=DCAi =

λ1 ∗ CFAi,0 + λ2 ∗ CFAi,i−1 + λ3 ∗ CFAi,i,

(7)

where λ1, λ2, λ3 ∈ (0, 1) are hyper-parameters, and λ1 +297

λ2 + λ3 = 1. CFAi,j refers to cross-frame attention between298

frames xi and xj .They jointly control the participation of the299

initial frame x0, the current frame xi and the preceding frame300

xi−1 in the DC Attention calculation. In the experiment, we301

set λ1 = 0.7 and λ2 = λ3 = 0.15 to enable the frame x0302

to be more involved in the spatial correlation control of the303

current frame for the sake of better appearance preservation.304

Apart from this, retaining a relatively small portion of fea- 305

ture interaction for the current frame and the preceding frame 306

simultaneously is promised to enhance motion stability and 307

improve temporal coherence of the generated animation. 308

Furthermore, it is vital to note that we do not replace all 309

the U-Net transformer blocks with DCAM. We find that in- 310

corporating the DC Attention only in the upsampling blocks 311

of the U-Net architecture while leaving the remaining un- 312

changed allows us to maintain consistency with the identity 313

and background details of the source, without compromising 314

the current frame’s pose and layout. 315

3.4 Mask-Guided Decoupling Module 316

Directly utilizing the entire image features for attention fu- 317

sion can lead to substantial loss of fine-grained details. To 318

address this problem, we propose the mask-guided decou- 319

pling module, which decouples the character and background 320

and enables individual inter-frame interaction to further refine 321

spatial feature perception. 322

For the source image Is, we obtain a precise body mask 323

Ms (i.e. Mx0
) that separates the character from the back- 324

ground by an off-the-shelf segmentation model [Liu et al., 325

2023a]. The target pose prior is insufficient to derive body 326

mask for each generated frame of the character. Considering 327

the strong semantic alignment capability of cross attention 328

layers mentioned in Prompt-to-prompt [Hertz et al., 2022], 329

we extract the corresponding body mask Mxi
for each frame 330

from the cross attention maps. With Ms and Mxi
, only at- 331

tentions of character and background within corresponding 332

region are calculated, according to the mask-guided decou- 333

pling module as follows: 334

Kc
j = Mxj

⊙ Kj ,Kb
j = (1−Mxj

)⊙ Kj

Vc
j = Mxj

⊙ Vj ,Vb
j = (1−Mxj

)⊙ Vj

CFAc
i,j = Attention(Qi,Kc

j , V
c
j ),

CFAb
i,j = Attention(Qi,Kb

j , V
b
j ),

(8)

where CFAc
i,j is the attention output in character between 335

frame xi and xj , and CFAb
i,j is for the background. Then 336

we can get the final DC Attention output: 337

DCAc
i = λ1 ∗ CFAc

i,0 + λ2 ∗ CFAc
i,i−1 + λ3 ∗ CFAc

i,i

DCAb
i = λ1 ∗ CFAb

i,0 + λ2 ∗ CFAb
i,i−1 + λ3 ∗ CFAb

i,i

DCAi = Mxi ⊙ DCAc
i + (1−Mxi)⊙ DCAb

i ,

(9)

for i = 1, ..., N . The proposed decoupling module intro- 338

duces explicit learning boundary between the character and 339

background, allowing the network to focus on their respective 340

content independently rather than blending features. Conse- 341

quently, the intricate details of both the character and back- 342

ground are preserved, leading to a substantial improvement in 343

the fidelity of the animation. 344

4 Experiment 345

4.1 Experiment Settings 346

We implement PoseAnimate based on the pre-trained weights 347

of ControlNet [Zhang et al., 2023] and Stable Diffu- 348
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Figure 4: Qualitative comparison between our PoseAnimate and other training-based state-of-the-art character animation methods. We
overlay the corresponding DensePose on the bottom right corner of the MagicAnimate(Densepose) synthesized frames. Previous methods
suffer from inconsistent character appearance and details lost. Source prompt: “A firefighters in the smoke.”(left)“A boy in the street.”(right).

sion [Rombach et al., 2022] v1.5. For each generated char-349

acter animation, we generate N = 16 frames with a unified350

512 × 512 resolution. All experiments are performed on a351

single NVIDIA A100 GPU.352

4.2 Comparison Result353

We compare our PoseAnimate with several state-of-the-art354

methods for character animation: MagicAnimate [Xu et al.,355

2023] and Disco [Wang et al., 2023a]. For MagicAnimate,356

both densepose [Güler et al., 2018] and openpose signals of357

the same motion are applied to evaluate performances. We358

leverage the official open source code of disco to test its ef-359

fectiveness. Additionally, we construct a competitive charac-360

ter animation baseline by IP-Adapter [Ye et al., 2023] with361

ControlNet [Zhang et al., 2023] and spatio-temporal atten-362

tion [Wu et al., 2023], which is termed as IP+CtrlN. It is363

worth noting that these methods are all training based, while364

ours does not require training. 365

Qualitative Results. We set up two different levels of pose 366

for experiments to fully demonstrate the superiority of our 367

method. The visual comparison results are shown in Fig. 4, 368

with the left side displaying simple actions and the right side 369

complex actions. Although IP+CtrlN has good performance 370

on identity preservation, it fails to maintain details and inter- 371

frame consistency. Disco loses the character appearance com- 372

pletely, and severe frame jitter leads to ghosting shadows and 373

visual collapse for complex actions. MagicAnimate performs 374

better than the other two methods, but it still encounters in- 375

consistencies in character appearance at a more fine-grinded 376

level guided by Densepose. It is also unable to preserve back- 377

ground and character details accurately, e.g. vehicle textures 378

and mask of firefighter and the boy in Fig. 4. MagicAnimate 379

under OpenPose signal conditions has worse performances 380
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Figure 5: Ablation study. Source prompt: “An iron man on the road.”

Method LPIPS ↓ CLIP-I ↑ FC ↑ WE ↓
IP+CtrlN 0.466 0.937 94.88 0.1323
Disco 0.278 0.811 92.23 0.0434
MA(DensePose) 0.273 0.870 97.87 0.0193
MA(OpenPose) 0.411 0.867 97.63 0.0261
Ours 0.247 0.948 97.33 0.0384

Table 1: Quantitative comparison between our PoseAnimate and
other training-based state-of-the-art methods. The best average per-
formance is in bold. ↑ indicates higher metric value and represents
better performance and vice versa.

than that under DensePose. While our method exhibits the381

best performance on image fidelity to the source image, and382

effectively preserves complex fine-grained appearance details383

and temporal consistency.384

Quantitative Results. For quantitative analysis, we ran-385

domly sample 50 in-the-wild image-text pairs and 10 differ-386

ent disered pose sequences to conduct evaluations. We adopt387

four evaluation metrics: (1) LPIPS [Zhang et al., 2018] mea-388

sures the fidelity between generated frames and source im-389

age. (2) CLIP-I [Ye et al., 2023] represents the similarity390

of CLIP [Radford et al., 2021] image embedding between391

generated frames and the source image. (3) Frame Consis-392

tency(FC) [Esser et al., 2023] evaluates video continuity by393

computing the average CLIP cosine similarity of two con-394

secutive frames. (4) Warping Error(WE) [Liu et al., 2023b]395

evaluates the temporal consistency of the generated animation 396

through the Optical Flow algorithm [Teed and Deng, 2020]. 397

Quantitative results are provided in Table. 1. Our method 398

achieves the best scores on LPIPS and CLIP-I and greatly sur- 399

passes other comparison methods in terms of fidelity to the 400

source image, demonstrating outstanding detail preservation 401

capability. In addition, PoseAnimate outperforms the other 402

two training-based methods in terms of inter-frame consis- 403

tency. A good Warping Error score is also achieved, illustrat- 404

ing that our method is able to maintain good temporal coher- 405

ence without additional training. 406

4.3 Ablation Study 407

We conduct ablation study to verify effectiveness of each 408

component of our framework and present results in Fig. 5. 409

The leftmost one in the first row is the source image, and 410

the others are the target pose sequences. The following rows 411

are generation results without certain components: (a) Pose- 412

Aware Control Module (PACM) that effectively removes the 413

interference of character original pose and maintains consis- 414

tency of content unrelated to character; (b) Dual Consistency 415

Attention Module (DCAM) that maintains image fidelity to 416

the source image and improves temporal consistency; (c) 417

Masked-Guided Decoupling Module (MGDM) that preserves 418

image details; and (d) Pose Alignment Transition Algorithm 419

(PATA) that tackles the issue of misalignments. 420

PACM. Fig. 5(a) illustrates the significant interference of 421

original pose on the generated actions. Due to the substan- 422

tial difference between the posture of Iron Man’s legs in the 423

source and in the target, there is a severe breakdown in the leg 424

area of the generated frame, undermining the generation of a 425

reasonable target action. Moreover, the character-irrelevant 426

scenes also have noticeable distortion. 427

DCAM. From Fig. 5(b) we can find that it fails to main- 428

tain content consistency without Dual Consistency Attention 429

Module. And the missing pole and Iron Man’s hand in the red 430

box reveal inter-frame inconsistency, indicating that both spa- 431

tial and temporal content cannot be effectively maintained. 432

MGDM. Compared with our results in Fig. 5(e), we can ob- 433

serve that small signs are missing without MGDM. It proves 434

that Masked-Guided Decoupling Module can effectively en- 435

hance the fine-grained feature perception and image fidelity. 436

PATA. Fig. 5(d) verifies the proposed Pose Alignment 437

Transition Algorithm. The red circles in the first frame indi- 438

cate the spatial content misalignment. When Iron Man in the 439

original image does not match with the input pose position, 440

an extra tree appears in the original position of Iron Man. And 441

such misalignment can also leads to disappearance of back- 442

ground details, e.g., streetlights and distant signage. 443

5 Conclusion 444

This paper proposes a novel zero-shot approach PoseAni- 445

mate to tackle the task of character animation for the first 446

time. PoseAnimate can generate temproal coherent and high- 447

fidelity animations for arbitrary images under various pose 448

sequences. Extensive experiment results demonstrate that 449

PoseAnimate outperforms the state-of-the-art training based 450

methods in terms of character consistency and detail fidelity. 451
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