
Sparse Composite Quantization

Ting Zhang 1∗ Guo-Jun Qi2 Jinhui Tang3 Jingdong Wang4

1University of Science and Technology of China, P.R. China 2University of Central Florida, USA
3Nanjing University of Science and Technology, P.R. China 4Microsoft Research, P.R. China

Abstract

The quantization techniques have shown competitive

performance in approximate nearest neighbor search. The

state-of-the-art algorithm, composite quantization, takes

advantage of the compositionabity, i.e., the vector approx-

imation accuracy, as opposed to product quantization and

Cartesian k-means. However, we have observed that the

runtime cost of computing the distance table in composite

quantization, which is used as a lookup table for fast dis-

tance computation, becomes nonnegligible in real applica-

tions, e.g., reordering the candidates retrieved from the in-

verted index when handling very large scale databases. To

address this problem, we develop a novel approach, called

sparse composite quantization, which constructs sparse dic-

tionaries. The benefit is that the distance evaluation be-

tween the query and the dictionary element (a sparse vec-

tor) is accelerated using the efficient sparse vector opera-

tion, and thus the cost of distance table computation is re-

duced a lot. Experiment results on large scale ANN retrieval

tasks (1M SIFTs and 1B SIFTs) and applications to ob-

ject retrieval show that the proposed approach yields com-

petitive performance: superior search accuracy to product

quantization and Cartesian k-means with almost the same

computing cost, and much faster ANN search than compos-

ite quantization with the same level of accuracy.

1. Introduction

Nearest neighbor (NN) search has wide applications in

pattern classification, computer vision, and information re-

trieval, such as the K-NN classifier, similar image search,

object instance search, and similar document search. Unfor-

tunately, exact NN search is often impractical in the large-

scale high-dimensional case because the computing cost is

very high, causing unaffordable latency to return the search

result. Thus, many research efforts have been devoted to

approximate nearest neighbor (ANN) search.

∗This work was done when Ting Zhang was an intern at Microsoft Re-

search, Beijing, P.R. China.

This paper concerns the quantization algorithms, a cate-

gory of compact coding approaches, for ANN search with

high-dimensional data, which shows competitive search ac-

curacy with tractable storage and search cost. Following

product quantization [13] that divides the space into parti-

tions and conducts k-means separately over each partition,

the extensions with optimized space partitions, Cartesian k-

means [22] and optimized product quantization [6], have

been proposed. The recently proposed composite quantiza-

tion approach [33] introduces a new framework generaliz-

ing those algorithms.

The acceleration obtained by these ANN algorithms

stems from the ability of efficiently computing the distance

between a query and a database vector by looking up a dis-

tance table in the online query stage before scanning the

whole database. Previous approaches mainly focus on im-

proving the accuracy of the distance approximation, while

paying little attention to reducing the cost of the online dis-

tance table construction. The construction cost becomes a

significant contribution to the ANN search cost in real ap-

plications, e.g., reordering the candidates retrieved from in-

verted index when handling very large databases, especially

when we use composite quantization for higher search ac-

curacy.

To handle this issue, we introduce a novel approach,

sparse composite quantization, which generalizes the com-

posite quantization approach by allowing the words in the

dictionaries to be sparse. The key advantage of this ap-

proach is that the distance between the query and every dic-

tionary word is evaluated very efficiently using sparse vec-

tor multiplication, which significantly reduces the search

time. As a consequence, the proposed approach constructs

the distance lookup table as fast as the most efficient algo-

rithm, product quantization, while achieving a higher ac-

curacy than product quantization and Cartesian k-means,

and also a similar or even higher accuracy when compared

to composite quantization. On the challenging search task

with 1 billion SIFT vectors, the proposed approach outper-

forms the state-of-the-art algorithms in terms of both search

efficiency and search accuracy. In particular, compared with

composite quantization that achieves the highest recall per-

1

formance, the proposed approach has successfully reduced

the search time by at least 7% up to 36% in many cases,

while the reduction of recall is limited within less than 3%.

2. Related work

The approximate nearest neighbor search algorithms are

in general developed from two main aspects: (1) compar-

ing the query with only a small subset of database vec-

tors through special data structures, such as k-d trees [4],

FLANN [20], and neighborhood graph [27], and (2) accel-

erating the distance computation through compact codes,

such as hashing [8, 32, 19, 26], quantization [13, 22,

33]. The real applications, e.g., handling very large scale

databases, often combine the two categories of solutions

together to achieve satisfactory search quality in terms of

search accuracy, search efficiency, and space cost. The pro-

posed approach belongs to the second category comprehen-

sively surveyed in [28]. It has been shown that the quanti-

zation algorithms [13, 22, 28] achieve better search quality

than hashing algorithms with Hamming distance, even with

optimized or asymmetric distances [9, 29]. In this section,

we present a brief review of the quantization algorithms.

Hypercubic quantization, such as iterative quantiza-

tion [8], isotropic hashing [17], harmonious hashing [31],

angular quantization [7], can be regarded as a variant of

scalar quantization by optimally rotating the data space and

performing binary quantization along each dimension in the

rotated space, with the quantization centers fixed at −1 and

1 (or equivalently 0 and 1). Such a way of fixing quantiza-

tion centers puts a limit on the number of possible distances

in the coding space, which also limits the accuracy of dis-

tance approximation even using optimized distances [9, 29].

Therefore, the overall search performance is not compara-

ble to product quantization and Cartesian k-means.

Product quantization [13] divides the data space into

(e.g., M) disjoint subspaces. Accordingly, each database

vector is divided into M subvectors, and the whole database

is also split into M sub-databases. A number of clusters are

obtained by conducting k-means over each sub-database.

Then a database vector is approximated by concatenating

the nearest cluster center of each subspace, yielding a rep-

resentation with a short code containing the indices of the

nearest cluster centers. The computation of the distance be-

tween two vectors is accelerated by looking up a precom-

puted table.

Cartesian k-means [22] (or optimized product quantiza-

tion [6]) improves the compositionabilty, i.e. vector approx-

imation accuracy, by finding an optimal feature space rota-

tion and then performing product quantization over the ro-

tated space. Additive quantization [1, 5] further improves

the compositionabilty by approximating a database vector

using the summation of dictionary words selected from dif-

ferent dictionaries, whose idea is similar to structured vec-

tor quantization [10] (a.k.a., multi-stage vector quantization

and residual quantization). It has been applied to data com-

pression [1] and inner product similarity search [5], yet is

not suitable for search with Euclidean distance due to the

lack of the acceleration of distance computation.

The state-of-the-art approach, composite quantiza-

tion [33], approximates a database vector using the summa-

tion of dictionary words, and introduces the orthogonality

condition between dictionaries, resulting in keeping the ef-

ficiency of computing the approximate distance with slight

sacrifice in compositionabilty (the vector approximation ac-

curacy). Our approach goes in this direction, and addresses

the high cost problem in computing the distance table.

There are other attempts to improve product quantiza-

tion in the other ways, such as distance-encoded product

quantization [11] and locally optimized product quantiza-

tion [16], which can also be combined with our approach in

the same way. The inverted multi-index [2] applies prod-

uct quantization to build an inverted index for searching

a very large scale database, with the ability of efficiently

retrieving the candidates from a large number of inverted

lists. Bilayer product quantization [3] improves the effi-

ciency of distance computation within the inverted multi-

index framework. We will also apply the proposed approach

to inverted multi-index to show its effectiveness.

3. Formulation

Given a database containing N data vectors X =
{x1,x2, · · · ,xN} of dimension D, the proposed approach

1) learns M dictionaries {C1,C2, · · · ,CM}, with each

containing a few number of (assumed to be K without loss

of generality) D-dimensional vectors (words) denoted by

Cm = [cm1 cm2 · · · cmK]; 2) approximates each database

vector using a composite vector x̄ =
∑M

m=1
cmkm

, where

cmkm
is the kmth vector in the mth dictionary Cm; and 3)

represents the database vector x using a short code of length

M logK , a sequence of indices (k1, k2, · · · , kM).
The distance between a query vector q and a database

vector x is approximated as below,

‖q− x‖22 ≈ ‖q− x̄‖22 = ‖q−
M
∑

m=1

cmkm
‖22 (1)

=

M
∑

m=1

‖q− cmkm
‖2
2
− (M − 1)‖q‖2

2
+

M
∑

i=1

M
∑

j=1,j 6=i

c⊤iki
cjkj

.

Composite quantization [33] simplifies the approx-

imate distance computation by introducing a con-

stant constraint on inter-dictionary- element-product
∑M

i=1

∑M
j=1,j 6=i c

⊤
iki

cjkj
= constant. Then it is enough to

compute the first term
∑M

m=1
‖q − cmkm

‖2
2

to search for

the nearest neighbors, which furthermore is accelerated by

looking up a distance table storing the distances between

the query and the words of all the M dictionaries, and thus

takes O(M) in computing time.

The distance table computation consists of MK distance

computations: {‖q − cmk‖22 | m = 1, 2, · · · ,M ; k =
1, 2, · · · ,K}, which takes O(MKD) time. Compared with

the approximate distance computation cost over all N data

vectors, O(MN), the distance table cost is negligible if

N ≫ KD. Nonetheless, considering a real application,

where we reorder the candidates retrieved from inverted in-

dex [2] for 128-dimensional SIFT features with a typical

setting, K = 256 and M = 8, the number of retrieved

candidates N (e.g., = 100, 000) is not much greater than

(about 3 times) KD (≈ 32, 000) and such cost of distance

table computation becomes significant and nonnegligible.

Our idea, to accelerate the distance table computation,

is inspired by the property: the cost of computing the Eu-

clidean distance between two vectors, ‖q − c‖22, can be

accelerated if the vector c is very sparse and ‖q‖2
2

is al-

ready known, hence the complexity in general becomes

O(‖c‖0), i.e., linear in the number of non-zero entries.

Rather than enforcing each dictionary word being sparse

(i.e., let each ‖cmk‖0 be D
M , into which we will show that

product quantization can be cast), we impose a global spar-

sity constraint over all the dictionary words together, e.g.,
∑M

m=1

∑K
k=1

‖cmk‖0 6 KD.

To this end, the objective is to minimize the vector

approximation error, with the constant inter-dictionary-

element-product constraint and the sparsity regularization.

We formally formulate the objective function as follows,

min
{Cm},{yn},ξ

N
∑

n=1

‖xn − [C1C2 · · ·CM]yn‖
2

2 (2)

s. t.

M
∑

m=1

K
∑

k=1

‖cmk‖0 6 S (3)

M
∑

m=1

M
∑

m′=1,m′ 6=m

y⊤
nmC⊤

mCm′ynm′ = ξ (4)

n = 1, 2, · · · , N. (5)

Here S is a positive constant indicating the sparsity degree.

yn = [y⊤
n1y

⊤
n2 · · ·y

⊤
nM]⊤, and ynm is a binary vector with

only one entry valued as 1 and all others as 0. It is meant

that the kth word of the dictionary Cm is selected to form

the approximation of xn if the kth entry ynmk is equal to

1. [C1C2 · · ·CM]yn is equivalent to the definition of the

approximation x̄ =
∑M

m=1
cmkm

.

4. Optimization

The constrained problem 2 contains both continuous

variables, ({Cm} and ξ) and binary variables ({yn}), and

includes two constraints, the equality constraint 4 and the

L0 sparsity constraint 3, which make it uneasy to solve. We

present a two-step approximate solution. The first step re-

places the L0 norm with the L1 norm and transforms the

problem to an unconstrained problem,

φ({yn}, ξ,C) =

N
∑

n=1

‖xn −Cyn‖
2

2
+ λ

M
∑

m=1

K
∑

k=1

‖cmk‖1

+ µ

N
∑

n=1

(

M
∑

m′ 6=m

y⊤
nmC⊤

mCm′ynm′ − ξ)2, (6)

where C = [C1C2 · · ·CM] and
∑M

m′ 6=m =
∑M

m=1

∑M
m′=1,m′ 6=m.

In the second step, we optimize another transformed

problem by dropping off the sparsity term,

φ({yn}, ξ,C) =

N
∑

n=1

‖xn −Cyn‖
2

2

+ µ

N
∑

n=1

(

M
∑

m′ 6=m

y⊤
nmC⊤

mCm′ynm′ − ξ)2, (7)

and introducing a new constraint: c = 0, ∀c ∈ C′, where

C′ is a subset of C = {cmkd | m = 1, 2, · · · ,M ; k =
1, 2, · · · ,K; d = 1, 2, · · · , D} of all the entries in the dic-

tionary C, such that the subset C \ C′ only contains those

entries whose absolute values are the S largest from the op-

timal solution C∗ to problem 6. Hence the new constraint

ensures that there are at most S nonzero entries in C, which

satisfies the constraint 3. It can be shown that this construc-

tion of C′ is equivalent to solving a constrained problem,

minC ‖C−C∗‖2F subject to
∑M

m=1

∑K
k=1

‖cmk‖0 6 S.

We solve both the problems 6 and 7 using an alternative

optimization algorithm in which each iteration alternatively

updates {yn}, ξ, and C. The whole pipeline is very similar

to the one given in [33] and the difference lies in updating

C. The outline is given in Algorithm 1. The following first

presents brief descriptions for updating {yn} and ξ and then

describes how to update C for the two problems 6 and 7,

respectively.

Update {yn}. With C and ξ fixed, we can see that the opti-

mization problem can be decomposed into N sub-problems,

φn(yn) = ‖xn −Cyn‖
2

2
+ µ(

M
∑

m′ 6=m

y⊤
nmC⊤

mCm′ynm′ − ξ)2,

each solving M sub-vectors {ynm}Mm=1
in cycle: with

{ynm′}Mm′=1,m′ 6=m fixed, we exhaustively check all the el-

ements in the dictionary Cm, find the element such that the

objective value is minimized and accordingly set the corre-

sponding entry of ynm to be 1 and all the others to be 0.

Algorithm 1 The sparse composite quantization algorithm

Input: X, λ, µ
Output: C, {yn}, ξ

1: for each iteration do

2: Update ξ;

3: for each cmkd ∈ C do

4: Compute α, β;

5: c⋆mkd = Sλ/α(−
β
α);

6: end for

7: Update {yn};

8: end for

9: Construct C′;

10: for each iteration do

11: Update ξ;

12: for each cmkd /∈ C′ do

13: Compute α, β;

14: c⋆mkd = − β
α ;

15: end for

16: Update {yn};

17: end for

Update ξ. With {yn} and C fixed, it can be easily shown

that the optimal solution to the objective function with re-

spect to ξ is,

ξ =
1

N

∑N

n=1
(
∑M

m′ 6=m
y⊤
nmC⊤

mCm′ynm′). (8)

Update C for the problem 6. The objective function

with respect to C is an unconstrained non-linear and non-

differentiable optimization problem. We again use the al-

ternative optimization technique to iteratively update each

entry in C: update cmkd by fixing all the other entries ex-

cept cmkd in C. Here cmkd is the dth entry in the kth vector

cmk of the mth dictionary. The objective function with re-

spect to cmkd is a unary function consisting of two quadratic

terms and an L1 sparse term and written as a minimization

problem,

ϕ(cmkd) =
∑

n∈Nmk

[(xnd − and − cmkd)
2

+µ(2andcmkd + bnd)
2] + λ|cmkd|, (9)

where Nmk = {n|cmkmn
= cmk}, and =

∑M
m′=1,m′ 6=m cm′km′nd, bnd =

∑M
m′ 6=m c⊤mkmn

cm′km′n
−

ξ − 2andcmkd, both and and bnd are independent of cmkd.

We solve the problem using the soft-thresholding technique,

c⋆mkd = Sλ/α(−
β

α
) =

{ − β
α + λ/α β

α >
λ
α

0 |βα | <
λ
α

− β
α − λ/α β

α 6 − λ
α

, (10)

where α =
∑

n∈Nmk
(2 + 8µa2nd) , and β =

∑

n∈Nmk
(2and − 2xnd + 4µandbnd).

Table 1. Detailed description of datasets.

Base set Query set Dim

MNIST 60,000 10,000 784

SIFT1M 1,000,000 10,000 128

Tiny1M 1,000,000 100,000 384

SIFT1B 1,000,000,000 10,000 128

Update C for the problem 7. The solution is very simple.

Dropping the sparse regularization term in 9, we have the

optimal solution, c⋆mkd = − β
α , if cmkd /∈ C′. According to

the constraint, c = 0 if c ∈ C′.

We initialize the algorithm using the solution of prod-

uct quantization as a warm start. There are two parameters:

the penalty parameter µ and the regularization parameter λ.

Both are selected by validation, where we use a small subset

of the learning set as the validation set. The best parameters

µ and λ are chosen such that the mean average search accu-

racy using the validation set as the query set when searching

for {5, 10, 15, ..., 100} nearest neighbors is the best.

5. Discussions

Let us look at a special sparsity constraint

for sparse composite quantization. We divide

each dictionary vector cmk into M subvectors,

cmk = [c1mk
⊤
, c2mk

⊤
, · · · , cMmk

⊤
]⊤, with the dimen-

sion of each subvector crmk equal to sm, resulting in
∑M

m=1
sm = D. We change the sparsity constraint into

a stronger one: {‖cmmk‖0 6 sm; crmk = 0, r 6= m, r =
1, 2, · · · ,M | m = 1, 2, · · · ,M ; k = 1, 2, · · · ,K}. This is

equivalent to that each dictionary Cm lies in a disjoint sub-

space, which means that sparse composite quantization is

degenerated to product quantization. Naturally, the optimal

distortion error when S = KD in our sparse composite

quantization is not larger than product quantization as the

optimized solution to product quantization is a feasible

solution to sparse composite quantization. This gives an

evidence that sparse composite quantization in general

produces better search quality than product quantization.

Cartesian k-means [22] (optimized product quantiza-

tion [6]) improves the compositionablity (the vector ap-

proximation accuracy) by finding an optimal space rota-

tion and performing product quantization over the rotated

space. Our approach can benefit from the optimized space

rotation by simply formulating the objective function as
∑N

n=1
‖R⊤xn− [C1C2 · · ·CM]yn‖22 with R being the ro-

tation matrix. In particular, we study the performance of

sparse composite quantization with the sparsity degree re-

duced (the value S increased) and the overall query time

cost same to Cartesian k-means.

1 10 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
e
c
a
ll

MNIST

PQ 32 bits
CKM 32 bits
CQ 32 bits
SQ1 32 bits
SQ2 32 bits
PQ 64 bits
CKM 64 bits
CQ 64 bits
SQ1 64 bits
SQ2 64 bits

(a)

16 bits 32 bits 64 bits 128 bits

0.4

0.5

0.6

0.7

0.8

0.9

1

Code length

M
A

P

MNIST

PQ
CKM
CQ
SQ1
SQ2

(b)

32 bits 64 bits 128 bits
0

0.5

1

1.5

2

2.5

3

Code length

D
is

ta
n

c
e

 l
o

o
k
u

p
 t

a
b

le
 t

im
e

c
o

s
t

/
m

s

MNIST

PQ
CKM
CQ
SQ1
SQ2

(c)

0.4 0.6 0.8 1 1.2 1.4 1.6

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Average query time cost / ms

R
e
c
a
ll@

1

MNIST, 64 bits encoding

PQ

SQ1

CKM

SQ2

CQ

(d)

Figure 1. Comparison for the results of different algorithms on the MNIST dataset in terms of (a) recall@R with 32 bits and 64 bits, (b)

MAP vs. the code length, (c) time cost of distance lookup table construction vs. the code length, (d) recall@1 vs. average query time cost

with 64 bits encoding.

6. Experiments

6.1. Setup

Datasets. The ANN search experiments include three parts.

First, we demonstrate the performance over three middle

and large scale datasets. MNIST [18] includes 60K 784D
raw pixel features describing grayscale images of handwrit-

ten digits as a base set, and 10K features as the queries.

SIFT1M [13] is composed of 1M 128D SIFT vectors as

a base set and 10K queries. Tiny1M [30] consists of 1M
384D GIST descriptors randomly sampled from the 80M
images [25] as a base set and 100K queries from the re-

maining images. Second, we show the performance over

a very large scale dataset using the inverted multi-index:

SIFT1B [15] comprises 1B SIFT features as a base set and

10K queries. The description is summarized in Table 1.

Last, we apply our approach to the object retrieval prob-

lem over the INRIA Holidays dataset [12] and the UKBench

dataset [21].

Compared methods. We compare the proposed approach

– sparse composite quantization (SQ), against three state-

of-the-art methods: product quantization (PQ), Cartesian k-

means (CKM) and composite quantization (CQ). It is al-

ready shown in [33] that PQ, CKM, and CQ, with a smaller

code length, achieve better search accuracy than hashing al-

gorithms with the same query time. Thus, we do not re-

port the results for hashing algorithms. All the results were

obtained with the implementations provided by the authors

or carefully re-implemented by us. We follow [13] and

choose K = 256 in our experiments. All the algorithms

conduct linear scan search using asymmetric distance for

middle and large scale datasets except 1B SIFT for which

we will show how to do search in Section 6.3. We re-

port the results from our approach with different sparsity

degrees, which includes two representative methods: SQ1

(S = KD) that almost takes the same query time with PQ

and SQ2 (S = min(KD +D2,MKD)) that almost takes

the same query time with CKM.

Evaluation. The search quality is evaluated using two mea-

sures: recall and mean average precision (MAP). Recall

is defined as: for each query, we retrieve its top-ranking

items and check whether the ground-truth nearest neighbor

is found in the retrieved items, and the average recall score

over all the queries is used as the measure. We report the

recall performance at various number R of retrieved items,

recall@R. The MAP score is reported by regarding the 100
nearest ground-truth neighbors as relevant answers to the

query. The average precision for a query is computed as
∑N

t=1
P (t)∆(t), where P (t) is the precision at cut-off t in

the ranked list and ∆(t) is the change in recall from items

t− 1 to t. We report the mean of average precisions over all

the queries under different code lengths.

In terms of search efficiency, we report two measures.

The first one is the time taken in constructing the distance

lookup table vs. the code length, which aims to indicate

that the proposed approach is able to reduce the construction

cost. Second, we vary the sparsity degree in the proposed

approach (i.e., vary S) and report the recall performance vs.

the query cost (including both the table construction cost

and the linear scan search cost) to show the superiority of

our approach over PQ and CKM.

6.2. Results for medium and large scale search

Figure 1 plots the results on the MNIST dataset. It can

be observed from Figures 1(a) and 1(b) that our approaches

(SQ1 and SQ2) perform better than PQ and CKM in terms

of recall@R and MAP under different code lengths (32 bits,

64 bits, and 128 bits). As shown in Figure 1(c), the time cost

of constructing the distance lookup table for SQ1 (SQ2) is

very close to PQ (CKM). In particular, one can clearly see

from Figure 1(d), which shows the results of our approach

with various sparsity degrees, that the proposed approach

1 10 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
e

c
a

ll

SIFT1M

PQ 64 bits
CKM 64 bits
CQ 64 bits
SQ1 64 bits
SQ2 64 bits
PQ 128 bits
CKM 128 bits
CQ 128 bits
SQ1 128 bits
SQ2 128 bits

(a)

16 bits 32 bits 64 bits 128 bits
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Code length

M
A

P

SIFT1M

PQ
CKM
CQ
SQ1
SQ2

(b)

32 bits 64 bits 128 bits
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Code length

D
is

ta
n

c
e

 l
o

o
k
u

p
 t

a
b

le
 t

im
e

c
o

s
t

/
m

s

SIFT1M

PQ
CKM
CQ
SQ1
SQ2

(c)

6.9 7 7.1 7.2

0.44

0.46

0.48

0.5

0.52

0.54

Average query time cost / ms

R
e

c
a

ll@
1

SIFT1M, 128 bits encoding

CKM

PQ

SQ2

SQ1

CQ

(d)

Figure 2. Comparison for the results of different algorithms on the SIFT1M dataset in terms of (a) recall@R with 64 bits and 128 bits, (b)

MAP vs. the code length, (c) time cost of distance lookup table construction vs. the code length, (d) recall@1 vs. average query time cost

with 128 bits encoding.

1 10 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
e
c
a
ll

Tiny1M, 128 bits encoding

PQ
CKM
CQ
SQ1
SQ2

(a)

16 bits 32 bits 64 bits 128 bits
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Code length

M
A

P

Tiny1M

PQ
CKM
CQ
SQ1
SQ2

(b)

32 bits 64 bits 128 bits
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Code length

D
is

ta
n

c
e

 l
o

o
k
u

p
 t

a
b

le
 t

im
e

c
o

s
t

/
m

s

Tiny1M

PQ
CKM
CQ
SQ1
SQ2

(c)

7 7.5 8 8.5
0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

Average query time cost / ms

R
e
c
a
ll@

1

Tiny1M, 128 bits encoding

SQ1

PQ

CKM

SQ2

CQ

(d)

Figure 3. Comparison for the results of different algorithms on the Tiny1M dataset in terms of (a) recall@R with 128 bits, (b) MAP vs.

the code length, (c) time cost of distance lookup table construction vs. the code length, (d) recall@1 vs. average query time cost with 128

bits encoding.

performs much better – with the exactly same query cost as

PQ and CKM, it improves them by ∼ 15% (PQ) and ∼ 3%
(CKM) in terms of recall@1. In comparison with CQ, our

approaches surprisingly get almost the same performance

as shown in Figures 1(a) and 1(b) which indicates that the

introduced sparsity in some sense removes the redundancy

of the dictionary elements, making it much efficient than

CQ shown in Figures 1(c) and 1(d).

Figure 2 shows the results for the SIFT1M dataset. The

natural order is used for PQ to achieve the best performance

as suggested in [13]. The proposed approaches (both SQ1

and SQ2) show the consistent superiority to PQ and CKM

in terms of recall@R and MAP, which can be seen from

Figures 2(a) and 2(b). For instance, the recall@10 score of

SQ1 (SQ2) with 64 bits on the SIFT1M dataset is 66.98%
(68.62%), about 6% (8%) better than 60.45% of PQ and

3% (5%) larger than 63.83% of CKM. The MAP scores of

SIFT1M on 64 bits for SQ1 and PQ are 0.468 and 0.417,

and the relative improvement is about 12.2%. The scores

for SQ2 and CKM are 0.490 and 0.447, and the improve-

ment reaches 9.61%. In terms of distance table construction

cost vs. the code length as shown in Figure 2(c), the pro-

posed approach is also very competitive, taking negligible

cost compared with PQ and CKM. From the comparison in

terms of recall@1 vs. query time shown in Figure 2(d), even

if with the exactly same cost of search time, the proposed

approach still achieves an improvement of 1.4% over PQ

and of 2.0% over CKM.

Figure 3 shows the results for the Tiny1M dataset. One

can see that the proposed approach (SQ1) also consistently

outperforms PQ in terms of the four evaluation schemes.

Under the same code length, the performance of our ap-

proach (SQ2) is slightly worse than CKM in terms of re-

call and MAP (Figures 3(a) and 3(b)). The reason is that

CKM is very close to CQ (equivalently to the proposed ap-

proach without the sparsity constraint), which is also ob-

served in [33]. This does not suggest that CKM is better

than the proposed approach. Figure 3(d) shows that in some

sparsity constraint, the proposed approach performs almost

the same as CKM. In particular, the proposed approach is

more flexible and is able to adapt to various needs of query

cost limits.

Table 2. Comparison of Multi-D-ADC system with different quan-

tization algorithms in terms of recall@R with R being 1, 10, 100,

time cost (in millisecond) with database vector reconstruction

(T1), time cost (in millisecond) without database vector recon-

struction but through distance lookup tables (T2). L is the length

of the candidate list reranked by the system.

Alg. L R@1 R@10 R@100 T1 T2

BIGANN, 1 billion SIFTs, 64 bits per vector

PQ

10000

0.158 0.479 0.713 6.2 4.1

CKM 0.181 0.525 0.751 11.9 4.6

CQ 0.195 0.558 0.765 15.7 7.1

SQ1 0.184 0.530 0.736 7.3 4.3

SQ2 0.191 0.546 0.754 8.6 4.5

PQ

30000

0.172 0.507 0.814 13.2 9.8

CKM 0.193 0.556 0.851 30.3 10.1

CQ 0.200 0.597 0.869 42.6 12.9

SQ1 0.192 0.571 0. 849 15.8 9.9

SQ2 0.198 0.586 0.860 19.9 10.0

PQ

100000

0.173 0.517 0.862 37.4 30.5

CKM 0.195 0.568 0.892 95.8 31.6

CQ 0.204 0.612 0.920 125.9 33.4

SQ1 0.194 0.584 0.903 43.7 30.9

SQ2 0.199 0.597 0.907 58.6 31.2

BIGANN, 1 billion SIFTs, 128 bits per vector

PQ

10000

0.312 0.673 0.739 7.0 5.5

CKM 0.357 0.718 0.772 12.4 5.8

CQ 0.379 0.738 0.781 29.0 7.9

SQ1 0.347 0.702 0.755 8.2 5.6

SQ2 0.368 0.725 0.773 9.5 5.7

PQ

30000

0.337 0.765 0.883 15.8 14.1

CKM 0.380 0.811 0.903 32.7 14.4

CQ 0.404 0.833 0.906 76.4 16.8

SQ1 0. 372 0.802 0.890 18.9 14.3

SQ2 0.392 0.821 0.904 25.8 14.4

PQ

100000

0.345 0.809 0.964 48.7 43.3

CKM 0.389 0.848 0.970 107.6 44.9

CQ 0.413 0.877 0.975 242.3 47.3

SQ1 0.381 0.852 0.969 59.3 43.6

SQ2 0.401 0.858 0.971 77.4 43.9

6.3. Results for very large scale search

We follow the inverted multi-index framework to solve

the ANN search problem over 1B 128-dimensional SIFT

features vectors [15]. The inverted multi-index structure

use product quantization for clustering to generalize the in-

verted index that is typically formed by performing cluster-

ing on the database vectors and storing the list of vectors

that lie in a cluster. The multi-sequence algorithm is intro-

duced to efficiently produce a sequence of multi-index en-

tries ordered by the increasing distances between the query

and the product-quantization centers, with the aim of re-

trieving the NN candidates. In addition, to reduce the mem-

ory cost, the database vectors are represented with short

codes, e.g., through product quantization [15], that is used

to rerank the candidates retrieved from the inverted multi-

index. We follow the Multi-D-ADC scheme [15] to apply

the compact coding algorithm to the residual displacement

between each vector and its closest coarse quantization cen-

ter.

The proposed approach can be applied to build inverted

multi-index (coarse quantization) and compact code rep-

resentation (fine quantization). On the candidate retrieval

stage, we directly apply the scheme of accelerated distance

table computation before performing the multi-sequence al-

gorithm for candidate retrieval. On the reranking stage,

there are two ways for distance computation: with recon-

structing the database vector, and without reconstructing

the database vector but through looking up distance tables

like [3]. Here we show how to accelerate the distance com-

putation without reconstructing the database vector.

We adopt two dictionaries C1 and C2, suggested by [3]

for coarse quantization, and represent the dictionaries for

fine quantization by {R1,R2, · · · ,RM}. Let the approxi-

mation of a vector x be x̄ =
∑

2

i=1
ciki

+
∑M

j=1
rjkj

. The

acceleration idea is inspired by [3], and illustrated below.

Expanding the approximated distance computation,

‖q− (

2
∑

i=1

ciki
+

M
∑

j=1

rjkj
)‖22 (11)

= ‖q‖2
2
+

2
∑

i=1

‖ciki
‖2
2
+

M
∑

j=1

‖rjkj
‖2
2

− 2

2
∑

i=1

q⊤ciki
− 2

M
∑

j=1

q⊤rjkj
+ 2

2
∑

i=1

M
∑

j=1

c⊤iki
rjkj

+ 2c⊤1k1
c2k2

+ 2

M
∑

j=1

M
∑

m=1,m 6=j

r⊤jkj
rmkm

, (12)

we can see that the right-hand-side contains 8 terms. The

first term only depends on the query, and is not necessary

to compute. The second and the third terms are the sum-

mation of the L2 norms of the selected quantization cen-

ters, where the norms are offline computed, and hence the

complexity is O(M). In the fourth term the inner products

have been computed in the candidate retrieval stage, and

this complexity is O(1). The fifth term takes O(M) time

if the inner products between the query and the dictionary

elements for the fine quantizer are precomputed. The sixth

term takes O(M) when the inner products between the el-

ements of the coarse and fine dictionaries are precomputed.

The last two terms are omitted because they are approxi-

mately equal to a constant. In summary, the online time

complexity is O(M) with precomputing the inner product

table storing the inner products between the query and the

fine dictionary elements.

32 bits 64 bits 128 bits
0

2

4

6

8

10

12

14

16

Code length

D
is

ta
n

c
e

 l
o

o
k
u

p
 t

a
b

le
 t

im
e

c
o

s
t

/
m

s

Holidays Fisher

PQ
CKM
CQ
SQ1

(a)

32 bits 64 bits 128 bits
0

2

4

6

8

10

12

14

16

Code length

D
is

ta
n
c
e
 l
o
o
k
u
p
 t
a
b
le

 t
im

e
c
o
s
t
/
m

s

UKBench Fisher

PQ
CKM
CQ
SQ1

(b)

0 5 10 15

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Average query time cost / ms

M
A

P

Holidays Fisher, 128 bits encoding

PQ

SQ1

CQ

CKM

(c)

0 5 10 15
2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

Average query time cost / ms

S
c
o

re

UKBench Fisher, 128 bits encoding

PQ

SQ1 CKM

CQ

(d)

Figure 4. Time cost of distance lookup table construction vs. the code length on (a) the Holidays dataset and (b) the UKBench dataset and

the performance (MAP and score) vs. the average query time cost with 128 bits encoding on (c) the Holidays dataset and (d) the UKBench

dataset.

Table 3. The performance over the Holidays dataset in terms of

MAP using different length of codes encoding.

♯Bits PQ CKM CQ SQ

Fisher

32 0.504 0.537 0.550 0.569

64 0.548 0.578 0.622 0.613

128 0.579 0.598 0.634 0.622

VLAD

32 0.513 0.545 0.578 0.580

64 0.574 0.598 0.632 0.630

128 0.586 0.609 0.644 0.639

We compare the proposed approach with three methods:

PQ, CKM, and CQ and use them to train the coarse and

fine quantizers. Following [15], for all the approaches, we

use K = 214 to build coarse dictionaries and M = 8, 16
for compact code representation. The performance com-

parison in terms of recall@R (R = 1, 10, 100), T 1 (query

time cost for the scheme with database vector reconstruc-

tion), T 2 (query time cost for the scheme without database

vector reconstruction but through distance lookup tables)

with respect to the length of the retrieved candidate list L
(L = 10000, 30000, 100000) is summarized in Table 2. It

can be seen from the T 1 and T 2 columns that like PQ and

CKM, our approaches, SQ1 and SQ2, are both accelerated,

and according to the T 2 column, the query costs of our ap-

proaches (SQ1 and SQ2) are almost the same to that of the

most efficient approach PQ. Considering the overall perfor-

mance in terms of the query cost for the accelerated scheme

(T 2) and the recall, one can see that SQ2 performs the best.

For example, the query cost of SQ2 is 36% smaller than

that of CQ when retrieving 10000 candidates with 64 bits

and the recall decreases less than 2.2%. In other cases, the

recall decrease is always less than 3% while the query cost

is saved at least 7%.

Table 4. The performance over the UKBench dataset in terms of

scores using different length of codes encoding.

♯Bits PQ CKM CQ SQ

Fisher

32 2.203 2.606 2.740 2.693

64 2.618 2.894 3.009 2.902

128 2.851 3.039 3.154 3.023

VLAD

32 2.214 2.631 2.746 2.695

64 2.629 2.925 3.046 2.933

128 2.878 3.069 3.185 3.056

6.4. Application to object retrieval.

We have also evaluated our method on the applica-

tion of compact codes [24, 6] to object retrieval over two

datasets: the INRIA Holidays dataset that contains 500
queries and 991 corresponding relevant images and the UK-

Bench dataset that contains 10200 images of 2550 groups

with each four images. We follow [12, 21] and evaluate the

performance over the INRIA Holidays dataset using mean

average precision (MAP) and performance over the UK-

Bench dataset using the score indicating how many of the

other images are in the top-4 rank where one image of each

group is used as query. We use 4096-dimensional Fisher

vectors [23] and VLAD vectors [14] as the image descrip-

tors.

The search results are shown in Tables 3 and 4. One

can observe that the performance of our approach SQ (S =
KD) is very competitive, overall better than CKM and PQ

and very close to CQ. In terms of the search efficiency as

shown in Figure 4, it can be observed that our approach and

PQ are the most efficient.

7. Conclusion

This paper presents a compact coding approach to ap-

proximate nearest neighbor search, called sparse composite

quantization. The proposed approach generalizes the com-

posite quantization by sparsifying the elements in the dic-

tionaries resulting in the efficient construction of a lookup

table storing distances between the query and the dictionary

words. The proposed approach in the applications to ap-

proximate nearest neighbor search achieves superior perfor-

mance in terms of search accuracy and search efficiency.

Acknowledgements

This work was partially supported by the National Ba-

sic Research Program of China (973 Program) under Grant

2014CB347600.

References

[1] A. Babenko and V. Lempitsky. Additive quantization for extreme

vector compression. In CVPR, pages 931–939, 2014. 2

[2] A. Babenko and V. S. Lempitsky. The inverted multi-index. In CVPR,

pages 3069–3076, 2012. 2, 3

[3] A. Babenko and V. S. Lempitsky. Improving bilayer product quan-

tization for billion-scale approximate nearest neighbors in high di-

mensions. CoRR, abs/1404.1831, 2014. 2, 7

[4] J. L. Bentley. Multidimensional binary search trees used for associa-

tive searching. Commun. ACM, 18(9):509–517, 1975. 2

[5] C. Du and J. Wang. Inner product similarity search using composi-

tional codes. CoRR, abs/1406.4966, 2014. 2

[6] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization for

approximate nearest neighbor search. In CVPR, pages 2946–2953,

2013. 1, 2, 4, 8

[7] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik. Angular

quantization-based binary codes for fast similarity search. In NIPS,

pages 1205–1213, 2012. 2

[8] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quanti-

zation: A procrustean approach to learning binary codes for large-

scale image retrieval. IEEE Trans. Pattern Anal. Mach. Intell.,

35(12):2916–2929, 2013. 2

[9] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik. Asymmetric dis-

tances for binary embeddings. IEEE Trans. Pattern Anal. Mach. In-

tell., 36(1):33–47, 2014. 2

[10] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on

Information Theory, 44(6):2325–2383, 1998. 2

[11] J.-P. Heo, Z. Lin, and S.-E. Yoon. Distance encoded product quanti-

zation. In CVPR, pages 2139–2146, 2014. 2

[12] H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak

geometric consistency for large scale image search. In ECCV (1),

pages 304–317, 2008. 5, 8

[13] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–

128, 2011. 1, 2, 5, 6

[14] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local

descriptors into a compact image representation. In CVPR, pages

3304–3311, 2010. 8

[15] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in

one billion vectors: Re-rank with source coding. In ICASSP, pages

861–864, 2011. 5, 7, 8

[16] Y. Kalantidis and Y. Avrithis. Locally optimized product quantization

for approximate nearest neighbor search. In CVPR, pages 2329–

2336, 2014. 2

[17] W. Kong and W.-J. Li. Isotropic hashing. In NIPS, pages 1655–1663,

2012. 2

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. In Intelligent Signal Pro-

cessing, pages 306–351. IEEE Press, 2001. 5

[19] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised

hashing with kernels. In CVPR, pages 2074–2081, 2012. 2

[20] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with

automatic algorithm configuration. In VISSAPP (1), pages 331–340,

2009. 2

[21] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary

tree. In CVPR (2), pages 2161–2168, 2006. 5, 8

[22] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR, pages

3017–3024, 2013. 1, 2, 4

[23] F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies

for image categorization. In CVPR, 2007. 8

[24] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image

retrieval with compressed fisher vectors. In The Twenty-Third IEEE

Conference on Computer Vision and Pattern Recognition, CVPR

2010, San Francisco, CA, USA, 13-18 June 2010, pages 3384–3391,

2010. 8

[25] A. B. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny im-

ages: A large data set for nonparametric object and scene recogni-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 30(11):1958–1970,

2008. 5

[26] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing

for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell.,

34(12):2393–2406, 2012. 2

[27] J. Wang and S. Li. Query-driven iterated neighborhood graph search

for large scale indexing. In ACM Multimedia, pages 179–188, 2012.

2

[28] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity search:

A survey. CoRR, abs/1408.2927, 2014. 2

[29] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li. Optimized

cartesian k-means. CoRR, abs/1405.4054, 2014. 2

[30] J. Wang, N. Wang, Y. Jia, J. Li, G. Zeng, H. Zha, and X.-S. Hua.

Trinary-projection trees for approximate nearest neighbor search.

IEEE Trans. Pattern Anal. Mach. Intell., 36(2):388–403, 2014. 5

[31] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai. Harmonious

hashing. In IJCAI, 2013. 2

[32] F. X. Yu, S. Kumar, Y. Gong, and S. Chang. Circulant binary embed-

ding. In ICML, pages 946–954, 2014. 2

[33] T. Zhang, C. Du, and J. Wang. Composite quantization for approxi-

mate nearest neighbor search. In ICML (2), pages 838–846, 2014. 1,

2, 3, 5, 6

