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ABSTRACT
This paper explores the idea of using deep neural network
architecture with dynamically programmed layers for brain
connectome prediction problem. Understanding the brain
connectome structure is a very interesting and a challeng-
ing problem. It is critical in the research for epilepsy and
other neuropathological diseases. We introduce a new deep
learning architecture that exploits the spatial and tempo-
ral nature of the neuronal activation data. The architecture
consists of a combination of Convolutional layer and a Re-
current layer for predicting the connectome of neurons based
on their time-series of activation data. The key contribution
of this paper is the dynamically programmed layer that are
critical in determining the alignment between the neuronal
activations of pair-wise combinations of neurons.

1. INTRODUCTION
Accurately modeling the brain of mammals is the most

challenging and interesting problem in the field of neuro-
science. The structure of brain has always been the driv-
ing factor for developing computational intelligence systems,
which in-turn help in understanding the structure of the
brain. The main reason for it to be challenging is because
of the presence of a large number of neurons - the human
brain is estimated to have 100 billion neurons each being
connected to thousands of neurons. Moreover, understand-
ing the structure of brain can solve a number of problems
in different fields. Understanding the brain structure is im-
portant for the treatment of epilepsy and other neuropatho-
logical diseases. At the neuronal level, obtaining the exact
connectivity information from the brain, where each neuron
has on average 7000 synaptic connections between neurons is
a daunting task. There are some traditional methods for de-
termining the connection between the neurons [8]. But they
are inaccurate, inefficient or require invasive approaches.
Connectomics is study of connectomes, which are maps

of connection within an organism’s nervous system. Infer-
ring the network topology from patterns of neural activity
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Figure 1: Plot of time series of activations of brain
neurons.[6]

are not new. The aim of connectomics is to derive the de-
tailed structure of the entire neural system. Some early
approaches that were seminal in the recent developments of
connectomics were those done by White et. al.[20] - a 300
cell nervous system of a nematode worm was accomplished.
There have also been several active research efforts in the
recent years to produce and analyze connectome datasets at
meso and macro scales. These involve non-invasive imag-
ing techniques of brain activity such as functional magnetic
resonance imaging (fMRI), including the Human Connec-
tome Project which is being led by the WU-Minn Consor-
tium [18]. At a smaller scale, the effort of reconstructing
networks from neural activity can be traced back to work
done by Eytan-Maron in the year 2006 [1]. In their work,
the in-degree of neurons were estimated based on the simple
logic of inferring connections based on the higher firing fre-
quency of activations. Another major study which brought
in a breakthrough was the one done by the Paninski group
at Columbia which was aimed at reconstructing the connec-
tivity from calcium fluorescence imaging data [19] [10]. The
idea was to infer spike times as a Bayesian inverse problem
and then estimate the Generalized Linear Model (GLM) [9]



Figure 2: Time series of fluorescence activities of all
neurons with a small vertical offset

Figure 3: Time series and discretized activities of
two neurons with a small vertical offset

kernels which were a measure of connectome weights of neu-
rons. Their work builds rigorously on the study of GLM
models demonstrating the reconstruction of spike data [17].
These methods have their own drawbacks but are far more
scalable than axonal tracing.
To address this problem in a different way rather than

adopting the conventional method, a new computation tech-
nique is employed. A recent breakthrough for observing the
neural activities of several neurons has been designed. This
new methodology takes advantage of optical imaging tech-
niques. The imaging of calcium influx into neurons pro-
vides an indirect and accurate measure of action-potential
generation within individual neurons. Certain fluorescent
molecules are used which respond to the binding of calcium
ions by changing their fluorescence properties [4].
These optical data are captured and were made public for

reverse-engineering the structure of brain. An open compe-
tition was also based on this released dataset. The dataset
consists of time-series data of neuronal activations which are
generated by realistic simulations of real networks of neu-
rons observed via calcium fluorescence recordings. The data

closely resembles the real recordings of cultured neurons and
provides unequivocal ground truth of neuronal connections.
The data was generated using a simulator that was exten-
sively studied and validated [15]. The dynamic behavior
of neurons was adapted to be reproduced by the simulator
as observed in the cultures. The model also simulates the
limitations and defects of the calcium fluorescence imaging
technology - limited time resolution where the optical imag-
ing technique does not allow to separate between individ-
ual spikes of neurons and light scattering effects where a
particular neuron gets stimulated by the activity of nearby
neurons. The data simulator used for synthesizing the data
conforms with realistic scenarios at three levels [15]. The
challenge is to infer the directed connections of neural net-
works from patterns of neural activity of individual neurons.
The problem can therefore be thought as a causal structure
reconstruction problem given the time series activation data
of neurons. Similar instances of this problem can be found
in genomics, climatology, epidemiology and econometrics.
In this paper, we present our unique approach which uti-

lize the time-series nature of the neuronal activation data.
The proposed model exploits both the spatial and temporal
structure present in the activation time-series data through
convolutional and max-pooling layers that output the fea-
tures invariant to the background noises and local transla-
tion and warping of time-series data. The temporal struc-
ture of these data are exploited by the recurrent layers, a
structure modeling the evolution of hidden states underly-
ing the time-series data. This makes our model better gen-
eralized in temporal domain. One of the key contributions
of this paper is the dynamically programmed layer whose
structure is customized to reveal how two brain neurons are
causally activated by aligning the compressed and gener-
alized representation of activation sequences obtained from
the recurrent layers.
The remainder of this paper is organized as follows. In

Section 2, we review the background and related work on
using time series of the activations of neurons to discover
the brain connectome. The problem is formally defined in
Section 3, followed by the proposed deep learning architec-
ture in Section 4. In Section 5 we present the training of the
proposed architecture through back propagation algorithm.
The experiment results on the real competition datasets are
demonstrated in Section 6. We finally conclude the paper
in Section 7.

2. RELATED WORK
Understanding the structure of brain through its connec-

tomes is the key for understanding the changes made to
these structures through diseases like epilepsy and Alzheimer’s
disease, thereby providing effective treatment for these. In
order to achieve this goal of understanding the brain, the
first ChaLearn Neural Connectomics Challenge was held.
The dataset released under this challenge consisted of the
time series activation data of 1000 neurons and their un-
equivocal ground truths that had been synthesized from a
data simulator as explained in previously. The method that
won the challenge was the work done by Sutera et. al. [16].
Their method takes advantage of simple first order filters
for smoothening and selectively amplifying the time series
activations. Moreover, they also used a hard threshold filter
for differentiating between the local and global activations
of neurons. These thresholded signals were then subjected



to a selective amplification filter which amplifies only the
local activations. The local activations are responsible for
throwing the light on brain connectome structure. These
local activation data are then used for calculating the par-
tial correlation coefficients for pairs of brain neuron. These
coefficients are calculated for every pair of neurons and com-
pared with the ground truth data. It is clearly observed that
their method is quite sensitive to the choice of the filters and
thresholds used. Moreover, their method does not utilize the
ground truth for tuning their parameters and also fails to
utilize the neuronal position data provided with the dataset.
Also, it does not perform well when the direction of causality
of signals is considered.
Another interesting method that performed better when

the direction of causality was considered was the work done
by Lukasz Romaszko [12]. This method used a deep learning
approach for processing the time series activation data. The
brain neural activations were thresholded into four possible
values - a drop, no change, a small increase and a spike based
on some thresholds. Then every pair of these thresholded
activation data was given as input to a Convolutional Neural
Network. The architecture consisted of two Convolutional
layers followed by a max pooling layer and another Convolu-
tional layer. The max pooled output was then subjected to a
fully connected layer. The softmaxed output was then used
for calculating the error based on the ground truth, which
was propagated back for correcting the weights in the neu-
ral network. Since every pair of neurons were provided as
input, this method performed better when the direction of
causality was considered. However, this method did not uti-
lize the entire time series of the neuronal activations. They
had empirically chosen the activation data upto 330 time
steps claiming that these had the necessary statistics for
determining the connectivity labels.
Work done by Czarnecki et. al. [12] was also one of the

methods that produced good connectivity scores. In their
approach, the neuron connectivity problem was modeled as
a simple binary classification problem. Each pair of neuron
was represented as a constant size vector where each di-
mension consisted of feature values produced by certain fea-
ture extractors like cross-correlation, cross-correlation with
one-time frame lag, Generalized Transfer Entropy and In-
formation Gain. Some topological features like Normalized
Difference, Geometrical Closure, Markov Closure, Network
De-Convolution etc. were also used for improving the classi-
fication process. These feature extractors were determined
through validation over the validation set. In their paper, it
was observed that only the Network De-Convolution feature
that was extracted from the time-series activation data had
consisted of the necessary information for predicting the con-
nectivity between the neurons. All the other feature do not
provide much information for classification. These extracted
features for pairwise neurons was augmented into a complete
vector which was then classified based on a random forest
classifier. The feature extractors used in this approach were
arbitrarily selected and the Network De-Convolution feature
was the only pre-dominant feature that seemed to contribute
to the classification process.
A popular method for inferring the brain connectomes is

the one done by Stetter et. al. [15]. They explore the idea of
modeling the brain into a Generalized Linear Model (GLM).
Their objective was to improve the Transfer Entropy and is
called the Generalized Transfer Entropy (GTE). The main

drawback of this method is that their assumption of model-
ing the brain into a GLM is not valid. This constrains the
connectome problem to a GLM kernel estimation problem
which has been observed be incorrect [13].
It could be observed that all the recent works on connec-

tomics are simple linear models that do not exploit the tem-
poral structure present in the dataset. In contrast to these
methods, our proposed method utilizes both the spatial and
temporal information present in the entire time-series acti-
vations of the neurons. In contrast to the conventional deep
neural networks, the structure is dynamically determined to
reflect the alignment between the activity patterns of con-
nected brain neurons.

3. PROBLEM FORMULATION
We begin with a formal definition of the problem in this

section. Given two activation time-series data x = [x1, · · · , xT ]
and x′ = [x1, · · · , xT ′ ] of length T and T ′ from two brain
neurons, we wish to predict if the former causes the acti-
vations of the latter one or its converse, and thus we can
predict if the two neurons are causally connected along with
its direction of causality. In other words, we wish to predict
the directed connection between neurons.
No prior knowledge about the brain neural topology is

given, making the competition very challenging. The only
information available to decide the brain connectome are
time-series activations, and a training set D = {(x,x′), y}
on which the connection label y ∈ {0, 1} is given to denote
if a pair of neuron is causally connected or not. We wish
to build a prediction model with competitive generalization
ability on the test set without the given neural connections.

4. PROPOSED ARCHITECTURE
In this paper, we propose a novel architecture for pre-

dicting the connectomes based on the time-series neuronal
activation data. The proposed architecture is as shown in
Figure 4. The model consists of two separate convolutional
layers which are subsequently followed by a recurrent layer.
The convolutional layer is responsible for learning of low-

level filters that process the time-series data, and the re-
current layer is responsible for learning a compressed and
generalized time-series representation of these filtered time-
series activation data. This generalized representation ob-
tained from the recurrent layers are then used in the dynami-
cally programmed layer which is responsible for revealing the
dynamic structure present between the two brain neurons.
This dynamic structure reflects the alignment between the
activity patterns of connected neurons.
During training the neurons are taken in a pair-wise man-

ner along with their ground truth labels. Each neuron ac-
tivation is passed through this model to obtain the time-
series compressed representation from a recurrent network.
The activations of each neuron in a pair are being dynami-
cally aligned in order to reveal how two neurons in the brain
are activated. In other words, the alignment throws light
on the inherent structure that would be present between
the pair of neurons considered. Based on these dynamically
obtained alignments, the final output prediction layer then
classifies these alignments as either connected or not con-
nected. Then, the error obtained through the predicted and
the ground truth label is then differentiated with respect to
the parameters in each layer present in the model. The gra-



Figure 4: Proposed deep learning architecture. The
input time series of activations of two brain neurons
are processed through two separate networks, con-
sisting of convolutional layers, max-pooling layers
and recurrent layers from the bottom up. Then a
dynamically programmed layer is built to align the
output sequences of salient temporal patterns from
the two recurrent layers, and predict the connec-
tome between the brain neurons.

dients thus obtained are used for back propagation of errors
through the layer. The training of our proposed model is
based on back propagation.
Before we start presenting the details about each type of

layers, we briefly introduce their structures and roles below.
Convolutional layers: They consist of one or more pairs

of convolution and max-pooling layers. The convolution
layer applies a set of filters that produces responses to small
regions of the input signals [7]. These filters are replicated
over the entire input signals to extract the strong tempo-
ral correlation from the time-series activations of brain neu-
rons. A convolutional layer is followed by a max-pooling
layer. This sub-sampling layer produces downsampled ver-
sion of the filter responses by taking the maximum filter
activations from different positions within a specified region
of the filter responses. This sub-sampling layer produces in-
variance to translation and makes the responses tolerant to
minor differences of positions of neural activation patterns
over the temporal space.
Recurrent layers: The fundamental idea behind the

Recurrent Neural Network [14] is that it has atleast one
feedback connection, making the activations flow around
the loop. This enables these neural networks to process
temporal sequences and provide a good generalization over
these temporal data. These have been actively used in
speech recognition and handwriting recognition applications
[3]. The simplest form of these recurrent neural networks
are the multi-layer perceptrons with the previous set of hid-
den activations feeding back into the network along with

the current input sequence. According to the Universal Ap-
proximation theorem, any non-linear dynamical system can
be approximated to any accuracy by a recurrent neural net-
work.
Dynamically programmed layer: The intuition of hav-

ing this dynamically programmed layer is due to the fact
that it would be easier to find the alignment between the
time-series of activations of any pairs of neurons. This intu-
ition is based on the fact that two causally connected neu-
rons tend to have a similar time-series of activations. These
can be observed from the Figure 1. Specifically, the role of
this layer is used to generate the optimal alignment between
the output sequences from the recurrent layers. While the
recurrent layers extract the salient temporal patterns from
the activations, this dynamically programmed layer aligns
the two time-series activations by maximizing the accumu-
lative correlations between the extracted temporal patterns.

4.1 Convolutional Layers
The dataset consists of time-series activation data of about

N = 1000 neurons. Each neuron n has an activation time
series x = [x1, · · · , xT ] of approximately T = 180, 000 steps.
To process such enormous amount of data and to exploit its
temporal structure, a convolutional layer is first built to pro-
cess the time-series data. This convolutional layer consists
of K convolutional kernels of different sizes, each of which
is represented by a vector of filter coefficients Wk ∈ Rnk .
Each kernel can be seen as a filter that extracts the salient

patterns of temporal structure from the neuron activations,
such as activation peaks, periodic changes and zero-crossing
frequencies. In contrast to the conventional signal filters,
these kernels are integrated into a deep architecture, whose
filtering coefficients are decided by maximizing the align-
ment between activation time-series of connected neurons.
We will present the details of learning algorithm later.
Formally, the output feature maps produced by each filter

kernel Wk in the convolutional layer is given by the following
equation:

hkt = σ((Wk ∗ x)t + bk)

where ∗ is the convolution operator defined as

(Wk ∗ x)t =
nk−1∑
i=0

W k
i xt−i, (1)

nk is the size of kth filter kernel, hk = [hk1 , · · · , hkL] is the
feature map output of the kth filter and bk is the bias.

4.2 Max-Pooling Layer
Following the convolutional layer, a max-pooling layer is

used which down-samples the output feature maps by se-
lecting the maximum feature value every P time steps. For-
mally, the max-pooling is performed by

hkt ← max{hkt·P , hkt·P−1, · · · , hk(t−1)·P+1}

for k = 1, · · · ,K and t = 1, · · · , b T
P
c.

The max-pooling layer has twofold advantages. On one
hand, it can generate a more robust sequence, which is in-
variant to small local translation and warping over time axis
by only retaining the most salient local responses. On the
other hand, by down-sampling the sequence obtained from
the convolutional layer, the max-pooling can produce a more



compact representation of the time-series of activation data.
This can remarkably reduce the cost of processing the time-
series data in the consecutive layers without loss of too much
information.

4.3 Recurrent Layers
The recurrent layer uses a multi-layer perceptron struc-

ture with a feedback loop. These recurrent loops exploit the
powerful capability of memorizing the temporal context of
time-series activations for this layer.
The input into the recurrent layer is the K feature map

outputs from the max-pooling layer hk, k = 1, · · · ,K. In
other words, at each time step, we have a K dimensional
input feature vector ht = [h1

t , · · · , hKt ] ∈ RK . The recurrent
layer outputs are represented as ot ∈ RL for each time t, and
the behavior of a classical recurrent layer can be described
by the following equations:

st+1 = fs(Wsxxt + Wssst)
ot = fo(Wosst)

(2)

where st is the hidden state vector of the recurrent layer,
and fs are fo are nonlinear hidden and output activation
functions (e.g., hyperbolic function and sigmoid function),
along with three connection matrices Wsx between hidden
state and input vector, Wss between two consecutive hidden
state vectors and Wos between the output vector and the
hidden state vector.
The hidden states of this dynamical system are the set of

values that summarizes all the information about the past
behavior of the system that is necessary to provide a unique
description of its future behavior. This recurrent layer is
learned through back-propagation of error through time, a
natural extension of the standard back-propagation algo-
rithm that performs gradient descent on a complete unfolded
network.

4.4 Dynamically Programmed Layer
The output sequences from the two recurrent layers are

used for dynamical alignment of the activation sequences.
This is performed to reveal the causal activation between
two brain neurons, and hence their connectivity.
The algorithm developed for this dynamical alignment is

based on the following intuition. The brain neurons when
activated by another neuron would have a similar response
over time as that of the stimulating neuron. So these neu-
rons would have a maximum dot product at that particular
time instance. Therefore, based on this intuition, the dy-
namically programmed layer aligns the two representations
of the neurons that would give the maximum dot product
accumulated over time instances.
Figure 5 illustrates the structure of this Dynamic Pro-

grammed Layer (DPL). Formally, consider two vector se-
quences ot and o′t obtained from two lower recurrent lay-
ers. We define a sequence of alignment nodes {1, · · · ,M}
in DPL. Then, each DPL node m is connected to a pair
of recurrent layer outputs oπm and o′π′

m
respectively, rep-

resenting the time-πm activation of the first neuron causes
the time-π′m activation of the second neuron. Because the
activation between neurons is directed, we set causality con-
straint πm ≤ π′m so the first neuron’s activation is always no
later than the corresponding activation of the second neuron
assumed to be activated by the first one.

Figure 5: Dynamically Programmed Layer. The
hidden state activations of two recurrent neural net-
works are dynamically aligned, to reveal the inher-
ent structure present in the activations of the two
brain neurons.

We use the dot product to measure the correlation be-
tween oπm and o′π′

m
. Then the best alignment π and π′

can be found by maximizing the following cumulative dot
product over time

π∗,π′
∗ = arg max

π,π′

M∑
m=1

〈oπm ,o
′
π′

m
〉

subject to πm ≤ π′m,m = 1, · · · ,M
πm ≤ πm+1, π

′
m ≤ π′m+1,m = 1, · · · ,M − 1

(3)

where the first inequality is the causal constraint, and the
constraints in the last line are to enforce the alignment for
each sequence preserves the temporal order in DPL.
Solving the above maximization problem yields an opti-

mal alignment of activation sequences between two neurons
that are causally connected. This DPL model is dynami-
cally decided, where the optimal assignment decided by π
and π′ between a pair of neurons differs from that between
another pair. For this reason, we call this layer dynami-
cally programmed. Moreover, once the output sequences
from the lower recurrent layers change, the best assignment
will change accordingly. This results in a joint optimization
problem of finding the best parameters for the recurrent
layer along with the best alignment between the activation
sequences.
Inspired by the dynamic programming technique used in

dynamic time warping [5], the optimal solution to the above
maximization problem can be solved by the following recur-
sive equation:

G(t, t′) = 〈ot,o′t′〉+ max{G(t, t′), G(t− 1, t′), G(t, t′ − 1)}
(4)

whereG(t, t′) represents the maximum cumulative inner prod-
uct between o1:t,o′1:t′ up to t and t′ respectively, with initial
condition G(1, 1) = 〈o1,o′1〉. Then the maximum value of
Eq. (3) is given by G(M,M).
Moreover, to enforce the causality constraint, we set

G(t, t′) = −∞, t > t′, (5)

which avoids reverse-causal connection between neurons, the
scenario where the first neuron causes the activation of the
second neuron backward in time.
Once the best π and π′ are found, the output of each DPL

node is given by

dm := 〈oπm ,o
′
π′

m
〉.



The DPL output is sensitive to the direction of causality
between the two brain neurons under consideration. At a
given time, it is assumed that only one brain neuron acti-
vates the other. At any given time, it is not possible for both
the neurons to activate each other. The maximum accumu-
lative dot product is calculated in a way that the direction
of causality is preserved while the computation proceeds.
The alignment is performed based on the assumption that
the first input neuron is causing the activation of the second
input neuron. Therefore, this alignment layer would give
the best possible value if the above assumption happens to
be true. Otherwise, the alignment would have a very poor
value.

4.5 Output Prediction Layer
These alignment produced by the DPL is used for making

a prediction of connections between the considered pairs of
brain neurons.
Formally, we can use an average pooling over all the out-

puts {dm|m = 1, · · · ,M} from the DPL layer

d̄ = 1
M

M∑
m=1

dm (6)

to predict whether two brain neurons are causally connected.
The larger the mean d̄, the more likely that the first neuron
causes the activation of the second neuron, and thus they
are causally connected. Specifically, a sigmoid function of d̄
is applied to model the probability of the two brain neurons
being connected y = 1 or not y = 0:

Pr(y = 1|d̄) = sigm(d̄) := 1
1 + exp(−d̄)

(7)

4.6 Feed-Forward Prediction
Stacking the aforementioned layers atop one another, a

pair of input activation sequences x and x′ from two brain
neurons will go up through these layers to generate the out-
put label y that predicts two brain neurons are causally con-
nected with a probability Pr(y = 1|d̄). Algorithm 1 sum-
marizes this feed-forward prediction process. In the next
section, we will discuss the training algorithm which decides
the parameters for such a multi-layered deep network.

5. TRAINING THROUGH BACK PROPAGA-
TION

The output layer gives a sigmoid score based on the pool-
ing over the DPL output that measures the alignment pro-
duced between the pair of neurons considered. If the two
brain neurons considered are causally connected, then this
dynamically programmed layer would output a much large
value as the score. On the contrary, if the two neurons that
are considered are not causally related, then this dynam-
ically programmed layer would achieve a very poor align-
ment, thus yielding a poor score of alignment. This align-
ment score is then used for classifying a presence or absence
of a connectome in the brain.
The cost function for this proposed model is a simple

cross-entropy loss which is derived based on the principle of
maximum likelihood estimation. Suppose we use y ∈ {0, 1}
to represent if the two neurons are causally connected or
not, then the cross-entropy error made by Pr(y|d̄) is defined

Algorithm 1 Feed-Forward Prediction
Input: A pair of activation time-series x and x′ from two
input brain neurons
Convolutional Layer: hk = σ(Wk ∗ x + bk) and
h′k = σ(Wk ∗ x′ + bk) for k = 1, · · · , k;
Recurrent Layer:

st+1 = fs(Wsxxt + Wssst), ot = fo(Wosst)

and

s′t+1 = fs(Wsxx′t + Wsss′t), o′t = fo(Woss′t)

Dynamically Programmed Layer: Find the optimal
connections π and π′ by solving Eq. (3);

Output Prediction Layer: d̄ = 1
M

M∑
m=1
〈oπm ,o′π′

m
〉;

Output: Pr(y = 1|d̄) = 1
1 + exp(−d̄)

.

as

J(Θ) = −y log Pr(y = 1|d̄)− (1− y) log Pr(y = 0|d̄) (8)

where the set Θ contains the model parameters, including
the connection matrices {Wsx,Wss,Wos} in recurrent layer,
and filter coefficients {Wk|k = 1, · · · ,K} in convolutional
layer.
The training algorithm proceeds by alternating between

the feed-forward prediction and back-propagation. In the
feed-forward prediction as depicted in Algorithm 1, the op-
timal alignments π and π′ in DPL is decided. Then they
are fixed in back propagation algorithm which computes the
derivatives to each parameter θ ∈ Θ by chain rule to update
the deep network parameters. Therefore, this training algo-
rithm jointly optimizes the alignments between activation
sequences in DPL, along with the optimal network parame-
ters.
The back-propagated errors through the network include

the following derivatives to each parameter θ ∈ Θ

∂J

∂θ
= ∂J

∂d̄

∂d̄

∂θ
(9)

where
∂J

∂d̄
= −y(1− sigm(d̄)) + (1− y)sigm(d̄) (10)

and

∂d̄

∂θ
= 1
M

M∑
m=1

∂dm
∂θ

= 1
M

M∑
m=1

∂

∂θ
〈oπm ,o

′
π′

m
〉

= 1
M

M∑
m=1

(
〈 ∂
∂θ

oπm ,o
′
π′

m
〉+ 〈oπm ,

∂

∂θ
o′π′

m
〉
) (11)

where ∂

∂θ
oπm and ∂

∂θ
o′π′

m
are the errors back-propagated

into the recurrent layers, which can be computed by using
Back Propagation Through Time (BPTT) [11] as in classical
recurrent neural networks.
It is worth noting that the above equation suggested that

the back-propagated errors can be additively combined through
the errors back-propagated through each oπm and o′π′

m
. Thus



Algorithm 2 Back Propagation
Input: A training set D = {(x,x′, y)} of pairs of activa-
tion time-series, and step size ε > 0;
repeat
Randomly pick up a pair of x and x′ from D;
Feed-forward prediction with x and x′;
for each m← 1 : M do
Run BPTT to compute ∂

∂θ
oπm and ∂

∂θ
o′π′

m
;

Update sequentially or in parallel

θ ← θ − ε 1
M

∂J

∂d̄
〈 ∂
∂θ

oπm ,o
′
π′

m
〉

and

θ ← θ − ε 1
M

∂J

∂d̄
〈oπm ,

∂

∂θ
o′π′

m
〉;

end for
until Stop condition is satisfied;
Output: Model parameters Θ.

we can update the model parameters individually with these
back-propagated errors:

θ ← θ − ε 1
M

∂J

∂d̄
〈 ∂
∂θ

oπm ,o
′
π′

m
〉

and

θ ← θ − ε 1
M

∂J

∂d̄
〈oπm ,

∂

∂θ
o′π′

m
〉

with a positive step size ε.
The above update rules can be applied sequentially or in

parallel to the model parameters without affecting the final
result. We have exploited the parallel implementation of up-
dating the model parameters with back-propagated errors,
and the results showed that significant orders of speedup can
be achieved with many cores of Graphical Processing Units
(GPUs).
Algorithm 2 summarizes the learning algorithm estimat-

ing the model parameters. The algorithm consists of both
feed-forward prediction and backward error propagation pro-
cesses. In the feed-forward prediction, the input activa-
tion time-series go up through the deep networks, and the
best alignment between them are made upon the output se-
quences from recurrent layers. In the backward error prop-
agation process, the model parameters are adjusted in the
gradient direction. This process usually changes the output
of recurrent layers, and thus the best alignment obtained by
the feed-forward prediction process should also be adjusted.
Therefore, the model parameter and the best alignment are
alternately updated, and a convergence can be eventually
reached since the accumulative inner product is bounded
1 and monotonically nondecreasing in each round over the
connected brain neurons.

6. EXPERIMENTS AND RESULTS
In this section, we evaluate the proposed algorithm on the

dataset published in the open competition that aims to ad-
vance the state of the art in prediction of brain connectomes.
1This boundedness condition can be satisfied by setting
the output activation fo to hyperbolic function tanh that
bounds the each entry of recurrent layer output vector ot
on [−1, 1].

6.1 Dataset and Background
The competition was organized for finding a way to un-

derstand the structure of the brain. Finding the structure
of brain would yield benefits in many fields of research.
The dataset that was released as a part of this competi-

tion consisted of six large datasets, each consisting of 1, 000
neurons and their corresponding time-series activities. Each
of these six datasets has its own degree of connectivity but
different levels of clustering coefficients. These degrees of
connectivity and clustering coefficients pertaining to each of
the dataset was not released as this information can be used
to over-fit the model. This implies that the neurons in each
of this dataset have different connectivity patterns across
the other neurons present in the same dataset. Therefore,
a good generalization of the designed algorithm can be ob-
tained when a model is trained over different datasets and
tested over a small subset of the examples that have not
been used for training.
It is also ensured that the dataset from which the testing

set is obtained is not used for training. By evaluating the
performance over such a scenario would shed light on the
level of generalization achieved by designed algorithm be-
cause it is being trained over different sets of training data
and being tested over a completely different set of data -
since, the clustering coefficients would be different for dif-
ferent datasets.

6.2 Experiment Setting
For the sake of fair comparison, we follow the similar com-

petition protocol performed by the existing methods [12].
These existing methods are trained over the same training
dataset and tested over the same testing set used for eval-
uating our model. Their corresponding performances are
compared in this section.
The overall performance comparison can be observed from

the Area under the Receiver Operating Characteristic (AU-
ROC) curve as shown in Figures 6(a)-6(f). It corresponds
to the area under the curve obtained by plotting the true
positive ratio against the false positive ratio by varying the
prediction values to determine the classification results. The
AUROC is calculated using the trapezoid method. In exper-
iments, neuron pairs are ranked by the likelihood that they
are causally connected with each other. The more likely a
pair of casually connected neuron is ranked higher than a
disconnected or non-causally connected pair, the larger the
AUROC is.

6.3 Model Architecture
The designed deep architecture consists of three filters in

the convolutional layer. Each of these filters created a fea-
ture map through repeatedly convolution of the one dimen-
sional input signal with the linear filter, adding a bias term
and then applying a non-linear sigmoid activation function.
Each filter used in the convolutional layer had a dimension
of 5× 1. Each feature map is then max-pooled over 47× 1
contiguous regions. Table 1 summarizes the details of con-
volutional layer and max-pooling layer.
The resulting signals are then processed by the recurrent

layer. As shown in Table 2, the number of hidden units in
the recurrent neural network is set to five, where each hidden
unit outputs a sequence of hidden states by applying a hy-
perbolic activation function. The output sequences obtained
from the recurrent layer are the inputs to the dynamically



Layer Input Filter Size Output
Activation sequence - - 179497 x 1
Convolution layer 3 5× 1 179493× 3
Max-Pooling layer 3 47× 1 3819× 3

Table 1: Details of convolutional layer and max-
pooling layer

Units Dimensions
Input 3 3819× 3
Output(Hidden) 5 3819× 5

Table 2: Details of recurrent layer

programmed layer. The number of hidden nodes in DPL
varies between different pairs of sequences to be aligned by
this layer. Finally, an averaging-pooling layer was used to
generate the output prediction on the brain neuron connec-
tivity.

6.4 Compared Algorithms
We compare the proposed architecture with the following

algorithms which have achieved the state-of-the-art perfor-
mance in the competition.

• Cross Correlation [15]: Computes the connectivity scores
based on simple cross-correlation over the time-series
neuron activation data.

• Granger Causality [2]: This is a statistical hypothe-
sis test which computes a score based on whether one
time-series is useful in predicting the other time-series
data.

• Information Gain - Entropy and Gini Index [15]: These
method treats all the points of the time-series activa-
tion data as independent and identical distributions
and computes a connectivity score based on the infor-
mation gain over these distributions.

• Trained Classifier [15]: This method computes par-
tial correlation coefficient based on some basic features
computed over the time-series data of neurons.

• Random Score [15]: Generates a random score of con-
nectivity. This method is a simple baseline method
used for comparison.

• Generalized Transfer Entropy (GTE) [13]: This is a
non-parametric statistic which measures the amount
of directed transfer of information between two ran-
dom processes. This is also one of the state of the
art method used for predicting the connectomes of the
brain neurons.

• Partial Correlation Statistics [16]: This method con-
sists of several lower order high pass and low pass fil-
ters applied over the time-series data. These filtered
time-series signals are used for calculating a connectiv-
ity score based on partial correlation coefficient. This
is the state of the art method in the open competition.

6.5 Results

Method AUROC
Random Score 0.4034
Generalized Transfer Entropy (GTE) 0.5472
Information Gain - Gini Index 0.5856
Information Gain - Entropy 0.6057
Granger Causality 0.4736
Trained Predictor 0.5985
Cross Correlation 0.5572
Partial Correlation Statistics 0.7698
Our Method 0.8309

Table 3: Comparison of average AUROCs over six
test sets achieved by different algorithms on pre-
dicting causal connections. The best performance is
highlighted in bold.

Figures 6(a)-6(f) compare the AUROCs obtained by dif-
ferent algorithms over six test sets. From the Figures 6(a)-
6(f), it can be clearly observed that our proposed method
surpasses all the existing methods in the evaluation scenario
as described above. Some of the existing methods are un-
supervised learning methods - they do not make use of the
ground truth provided with the dataset during the training
process. Hence, these methods are directly evaluated over
the test set.
The proposed model identifies the direction of causality

present in the brain neurons. The basic idea is to check
whether the the time-series variables are symptomatic to
any underlying process. The direction of causality of brain
neurons can be better predicted based on the past values of
either of these neurons. For example, if neuron A is the cause
for activation of neuron B then the activations of neuron B at
any point in time can be better predicted based on the past
activations of neuron A. If these two neurons are not causal,
then it would be impossible to make the above prediction.
Therefore, in this case, the dynamically programmed layer
would have a poor value due to the mis-alignment of these
two neurons A and B, i.e. unable to predict the future values
of one neuron based on the past values of the other neuron.
It is a well known fact that causal relationships can be

confounded. The fact that two neurons A and B are cor-
related does not imply that there is a physical connection
between these two neurons. There might be a third neuron
that is responsible for these causes. This problem is difficult
to be solved and hence, this competition used the AUROC
as the evaluation metric. It stresses over the importance
of revealing the presence of a connection between the two
brain neurons rather than the absence of connection between
them.
Our method makes an assumption that the first neuron

would be the cause for activation of the second neuron.
Sometimes, the second neuron might be the cause for ac-
tivation of the first neuron. This can be detected by swap-
ping the order of brain neurons. In order to accommodate
this scenario, both the training and testing datasets have
been augmented by forming a set of ordered pairs of neu-
rons. Therefore, our proposed algorithm would be able to
predict the causal directions with a better accuracy between
any pair of neurons as long as they have been observed in
the dataset.
This improvement of accuracy of prediction of brain con-
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Figure 6: AUROC Comparison on six test Sets. The figure is best viewed in color.

nectomes, with the direction of causality under consider-
ation, is achieved mainly because of these non-linear rep-
resentations of the time-series of activations of these brain
neurons which are obtained through the combination of con-
volutional and recurrent layers. This compressed and gener-
alized representations of these time-series activations of the
brain neurons are then used for obtaining an alignment score
based on the dynamically programmed layer.
This exploits the fact that two causally connected neu-

rons would have similar time-series of activations, which are
subject to background noises, local warping and transla-
tion. Through the back-propagation training process, the
proposed deep architecture could extract invariant patterns
to these changes, resulting in the robust alignment between
different time series of brain neuron activations.

6.6 Learned Convolutional Filters
Finally, we look into some details about the obtained deep

architecture. After training the model over the training
sets, three convolutional filters were obtained as illustrated
in Figure 8. Based on this figure, it could be clearly ob-
served that these convolutional filters that have been trained
through back-propagation form a band pass filter (filter - 1),
band reject filter (filter - 2) and a selective amplification fil-
ter filter (filter - 3).
These three filters extract different patterns of local ac-

tivation activity from a sliding window of size 5 superim-
posed over the input activation time series, yielding a vari-
ety of complementary output features for further processing
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Figure 7: The learning curve illustrates the training
errors versus the number of echoes in the training
process.

through the deep networks.

7. CONCLUSION
We proposed a novel deep learning algorithm for predict-

ing the brain connectomes based on the time-series activa-
tions of brain neurons. The proposed architecture is both
scalable and easy to train in terms of resources and time.
The improvement obtained in terms of prediction accuracy
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Figure 8: The three convolutional filters obtained
through the training of the proposed deep architec-
ture.

is critically due to the exploitation of the deep architec-
ture, which jointly extracts sequences of salient patterns of
activation and aligns them to predict the causal connectiv-
ity between brain neurons. Experiment result on an open
competition dataset shows that the proposed method out-
performs the state-of-the-art algorithms.
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