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ABSTRACT
An important problem in large-scale sensor mining is that of
selecting relevant sensors for prediction purposes. Selecting
small subsets of sensors, also referred to as active sensors, of-
ten leads to lower operational costs, and it reduces the noise
and information overload for prediction. Existing sensor s-
election and prediction models either select a set of sensors
a priori, or they use adaptive algorithms to determine the
most relevant sensors for prediction. Sensor data sets of-
ten show dynamically varying patterns, because of which it
is suboptimal to select a fixed subset of active sensors. To
address this problem, we develop a novel dynamic predic-
tion model that uses the notion of hidden system states to
dynamically select a varying subset of sensors. These hid-
den system states are automatically learned by our model in
a data-driven manner. The proposed algorithm can rapidly
switch between different sets of active sensors when the mod-
el detects the (periodic or intermittent) change in the system
state. We derive the dynamic sensor selection strategy by
minimizing the error rates in tracking and predicting sensor
readings over time. We introduce the notion of state-stacked
sparseness to select a subset of the most critical sensors as
a function of evolving system state. We present experimen-
tal results on two real sensor datasets, corresponding to oil
drilling rig sensors and intensive care unit (ICU) sensors, and
demonstrate the superiority of our approach with respect to
other models.
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1. INTRODUCTION
The deployment of sensor networks have become ubiq-

uitous in many real-world systems to provide continuous
monitoring [2][7][10]. Sensor networks are used to moni-
tor dysfunctions in oil drilling rigs [9], and abnormal patient
conditions in intensive care units (ICU) [17], and enemy ac-
tivity in military scenarios. Indeed, our experimental results
in this paper will explore some of these scenarios.

One of the pervasive properties of most sensor networks
is that they are highly redundant in terms of the collected
data. For example, a bird call at one sensor will typically
also be detected by a sensor a few meters away. Even in
cases where the sensors measure different quantities, they
are strongly correlated by recording the same outside even-
t. Therefore, a salient question arises as to whether one
can retain only a smaller subset of sensors without losing a
significant amount of information. An important practical
motivation in such scenarios is to reduce the cost of opera-
tion and the information overload, while losing only a limited
amount of information. For example, deploying, maintain-
ing, and continuously using sensors in the earth subsurface’s
drilling environments is extremely expensive. By selecting a
smaller set of sensors to track, significant direct and indirect
cost savings are achieved. Moreover, depending on the na-
ture of the correlations, all sensors are not equally useful to
track. In many cases, including irrelevant sensors may even
have negative qualitative effects in predictive applications.

Many state-of-the-art methods consider a static sensor s-
election model, in which a fixed set of sensors are actively
selected. This paper deviates from these methods by de-
veloping a dynamic sensor selection model in which the set
of selected sensors change over time as the hidden state of
the system evolves. Such hidden states often have seman-
tic interpretations in real scenarios. For example, in an oil
drilling rig, the sensors have different patterns of correlation-
s during periods when the drill is moving forward, or when
the drill is moving backward. Furthermore, the presence



of “typical” dysfunctions or abnormal events will create dif-
ferent patterns of correlations. Similarly, in an ICU sensor
network, the state of the patient might affect the underly-
ing patterns of correlations between medical sensors. This
implies that it is suboptimal to select a static correlation or
selection model. Furthermore, in many application-specific
scenarios, such as event detection, the system states might
have important explanatory power, providing deep insight
into the monitored events. Therefore, we view the approach
in this paper as a first step to fully modeling the tempo-
ral sensor stream. This can provide a gateway to exploring
other important problems in sensor network analysis.

In this paper, we develop a state-driven dynamic predic-
tion model to track and predict the system states over time.
These states are used to dynamically reveal the pattern-
s of correlations between sensors, and select sets of non-
redundant sensors as a function of changing states. Exper-
imental results on the oil drilling rig and the ICU sensor
networks demonstrate the competitive performance of the
proposed algorithm.

The remainder of this paper is organized as follows. The
problem is formulated in Section 3. The learning and infer-
ence algorithms are presented in Section 4. In 5, we present
the details behind dynamic sensor selection and prediction
algorithm, which can reduce to an ad-hoc static sensor s-
election model as a special case. The experiment results
on the oil drilling sensor and the ICU sensor datasets are
demonstrated in Section 6, followed by the conclusion in 7.

2. RELATED WORK
The analysis and modeling of the dynamics of sensor data

streams has been extensively studied in the literature [16,
14, 1, 15, 6]. For this purpose, one of the most important
problems is that of modeling the dynamic correlations be-
tween multiple sensor data streams over time in an effective
and scalable fashion. The methods in [14, 16] model lag-
correlations to forecast the future data streams over time.
The techniques in [3, 8] develop a sensor selection model
with a graph structure that models the domain-specific cor-
relations between sensors. Aggarwal et al. [1] also develops
a dynamic model for functional dependency between sen-
sors in real time to predict the changing trends in the sensor
data streams. The work in [20] uses linear regression to
model the sensor correlations for prediction. An adaptive
model [19] is proposed to predict the future sensor readings
so that the unnecessary communications can be saved when
the prediction model offers a satisfactory estimates of sen-
sor measurements. The algorithm proposed in [4] develops
adaptive querying based on pairwise covariances between
sensor streams in order to reduce the communication over-
head with limited bandwidth. In contrast, [5] proposes a hy-
pothesis testing based prediction model that can bring the
sensor sample series closer to weak stationarity to achieve
low energy dissipation.

The aforementioned models and algorithms share a com-
mon characteristic – they reveal a dynamic model that is
stationary in time. Although this is not a big obstacle to
model the real world over a short time frame, the model will
be unable to take advantage of the repetitions in the evolving
trends over longer time frames. To address this deficiency,
we propose a state-driven dynamic model for time-series sen-
sor data. The states provide a model that can handle the
typical forms of dynamic evolution over longer time frames.

Any key sets of unique correlations over longer time periods
can be essentially encoded and leveraged by these states.

3. FORMULATION
In this section, we will first introduce the formulation for

the dynamic sensor selection problem.

3.1 Dynamic Sensor Selection
Consider a set of sensors indexed with N = {1, 2, · · · , N}.

The nth sensor generates a real-valued time-series stream
xt(n) ∈ R at each time step t. The the sensor selection
problem may be formulated as that of finding a small set of
active sensors Mt ⊆ N from which the readings of inactive
sensors can be predicted as accurately as possible. Note that
Mt is indexed with t to reflect the fact that active sensors
are dynamically selected.

Definition 1 (Dynamic Sensor Selection). Given a
set of sensors N = {1, 2, · · · , N}, the dynamic sensor selec-
tion model is defined as that of selecting a smaller subset
of sensors Mt ⊆ N at each time step t, whose signals can
accurately predict all sensor signals {xt′(n)|n ∈ N} of both
active and inactive sensors for t′ ≥ t.

3.2 State Evolution Model
The aforementioned definition specifies a new paradigm

of dynamic sensor selection model to track and predict sen-
sor readings. The set of selected sensors can be dynamically
adjusted as the system state evolves over time. For exam-
ple, in the oil drilling application, different sets of active
sensors should be selected to reflect the change in the me-
chanical and electrical state of the system as a consequence
of changes in the nature of the of drilling operations. In
many sensor applications, such states are not visible to the
user, but they can only be perceived in terms of the changes
in the patterns of underlying stream correlations. Therefore,
we assume that these states are hidden, and they need to be
learned and detected in a data-driven manner.

To model the impact of system conditions on sensor se-
lection and prediction, we define the following hidden state
evolution model for the system (e.g., an oil drilling rig or a
patient) monitored by a sensor network N .

Definition 2 (State Evolution Model). A system
has a set of K states denoted by S = {1, 2, · · · ,K}. At
each time t, the system has a hidden state st ∈ S. The ini-
tial state of the system is modeled with a probability vector
Π = [π1, π2, · · · , πK ]T , i.e., Pr (s0 = k|Π) = πk. The sys-
tem transits from state st to state st+1 with a probability of
Ast,st+1

, where Ast,st+1
is an element of a transition ma-

trix A. Therefore, the overall state evolution model is fully
defined by E = {S ,Π,A}.

This model defines a Markov chain of the states [11], where
the state at each time only depends on the state at the pre-
ceding step. In other words, once the state is given for the
current time, all the states of the future steps are indepen-
dent of the past states. More complex higher-order Markov
chains can be defined in which the system state depends on
more previous states beyond the immediately previous one.
However, increasing complexity can also cause overfitting.
Therefore, for simplicity, we adopt the aforementioned state
evolution model.
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Dynamically selected sensors in each state

• State 1: M(1)={1,3}

• State 2:M(2)={3}

• State 3:M(3)={1,4}

Figure 1: The dynamic sensor selection model.

3.3 State-Driven Sensor Selection and
Prediction

Given the aforementioned state evolution model, the dy-
namic sensor selection model in Definition 1 can be re-casted
as a problem of selecting a subset of active sensors M(st) ⊆
N as a function of the system state st at each time t. In
other words, different sets of active sensors are used to track
and predict the streams of sensor data. This yields a novel
dynamic sensor selection and prediction model as opposed
to the static sensor selection model.

Figure 1 illustrates an example of dynamic sensor selection
model. Four sensors are shown in the figure with 3 hidden
states for the system. In each state, a distinct set of sensors
are selected. For example, for state 1, the sensors in M(1) =
{1, 3} are actively selected. Then, the system evolves into
state 2, in which the sensor in M(2) = {3} is selected. The
system keeps changing its state, and the corresponding set
of sensors are selected along with each state.

We can define a P -step state-driven linear prediction mod-
el. It uses the signals collected from the active sensors to
predict the signals of the (both active and inactive) sensors
P steps into the future.

Definition 3 (P -step model with fixed window R).
Given the states {st−r|0 ≤ r < R} up to time t, the linear
prediction model predicts xt+P = [xt+P (1), · · · , xt+P (N)]T

by

xt+P =
R−1∑

r=0

W (st+P , st−r)xt−r + b(st+P ) + εt+P (1)

where W (st+P , st−r) ∈ R
N×N is a N×N prediction matrix

from state st−r at time t−r to state st+P at time t+P , and
b(st+P ) ∈ R

N is the bias vector for the state st+P at time
t + P . The notation εt+P represents the noise drawn from
a Gaussian distribution N (0N , σ2IN ) with zero mean and
isotropic variance σ2. It is assumed that the noise terms at
various time instants are independent.

Remark: In the aforementioned model, each prediction ma-
trix W(s′, s) makes use of sensor signals in state s to predict

the future sensor readings in state s′. For this reason, we call
the second argument s of this prediction matrix the sender
state, and the first argument st as the receiver state. The use
of both sender and receiver states to specify the prediction
matrix enhances the model fidelity – the predicted sensor
readings depend not only on the past state from which the
sensor readings are collected, but also on the future state
for which the prediction is made. This is in contrast to
the Auto Regressive Model (ARM) [12], a popular dynamic
model that predicts the sensor readings independent of the
rapid-changing states.

Now consider a sender state s in (1), in which the columns
of W (s′, s) with all-zero entries correspond to the sensors
that can be turned off without affecting the prediction re-
sult according to the model (1). Therefore, as long as all
the matrices {W (s′, s) |s′ ∈ S} with the same sender state
s have a common set of zero columns, the corresponding
sensors can be turned off when the sensor network runs into
state s, no matter which receiver state it will run into in the
future. Thus, those nonzero columns correspond to the se-
lected sensors that ought to be turned on, which we denote
by M(s).

Observation 1 (Zero-Column Sensor Selection).

If all the prediction matrices W(s) , {W(s′, s)|s′ ∈ S} with
the same sender state s have a common set of zero-columns,
the corresponding sensors can be turned off without affecting
the prediction result. In other words, we only need to se-
lect for each state s a set of sensors M(s) corresponding to
those common nonzero columns for the prediction matrices
in W(s) .

In the next section, we will see that how this requirement is
fulfilled when we formulate sensor selection problem.

4. MODEL LEARNING AND INFERENCE
The general idea of solving a dynamic sensor selection and

prediction problem is to implement an EM (Expectation-
Maximization) algorithm, which alternates between infer-
ence of states {st|t = 0, 1, · · · , T} (E-Step) and the learning
of the parameters including {W(s′, s)|(s′, s) ∈ S×S},{b(s)|s ∈
S} in the prediction model and {Π, A} in the state evolution
model (M-Step). In the following two subsections, we will
show how to solve these two subproblems.

4.1 Model Learning: M-Step
Suppose we have a time series of sensor signals {xt|t =

0, 1, · · · , T}, and we have sampled the corresponding se-
quence of states s = {st|t = 0, 1, · · · , T}. Now, we are ready
to estimate the parameters for the state-evolution model in
Definition 2 and the state-driven prediction model in Defi-
nition 3.

According to Eq. (1), with the independent Gaussian
noise terms εt, the maximum likelihood criterion leads to
the least squares problem for learning the prediction matri-
ces {W(s′, s)|r, s′, s ∈ S}) by minimizing the following loss
function:

Lls =
1

2σ2

T
∑

t=P

Es||xt+P −

R−1
∑

r=0

W (st+P , st−r)xt−r − b(st+P )||22

(2)

Here, Es(·) denotes the expectation over the hidden states
s = {st|t = 1, 2, · · · }. This yields the smallest prediction
errors on the training set in the least squares sense.



In addition, by the maximum likelihood criterion, the
transition parameter A of the state evolution model can be
solved as follows:

As,s′ =

T−1∑
t=0

Est,st+1
δ [[st = s, st+1 = s′]]

T
(3)

Here, δ [[·]] is the indicator function, which outputs 1 if the
included condition is satisfied and 0, otherwise. This equa-
tion counts how many times a transition from s to s′ has
occurred in expectation sense.

In Section 4.2, we will present how to sample a sequence
of states {st|t = 1, 2, · · · , T}, which are used to approximate
the aforementioned expectations.

4.1.1 Dynamic Sensor Selection
To select a smaller set of sensors for each state, we intro-

duce the following L1,2 norm which encourages zero-columns
on the prediction matrix.

Definition 4 (L1,2 matrix norm). The L1,2 norm for
a matrix M is defined as the sum of L2 norms of the column
vectors for this matrix, i.e.,

‖M‖1,2 =
N∑

i=1

‖Mi‖2 (4)

Here, Mi is the ith column vector of M.

The minimization of an objective function with such L1,2

norms on a matrix tends to make some of entire columns
have zero elements. Forcing such sparseness with carefully
tailored regularization is achieved in many data mining and
machine learning applications such as Lasso [21]. Just as
Lasso sparsity is used for feature selection, we use this form
of regularization with the following stacked sparseness for
sensor selection.

The goal is to fulfill the zero-column sensor selection re-
quirement established in Observation 1. We can stack all
the matrices corresponding to the same sender state s, which
forms a bigger matrix as follows:

W(s) =











W(1, s)
· · ·
W(k, s)
· · ·
W(K, s)











∈ R
KN×N (5)

Since each column ofW(s) is a concatenation of the columns
of all the matrices with the same sender state s, minimiz-
ing ‖W(s)‖1,2 can force some columns of these matrices to
be zero. This results in common zero columns, which is re-
ferred to as stacked sparseness for the common sender state
in this paper. Then, we only need to select the sensors cor-
responding to nonzero columns at state s and leverage their
measurements to predict the future sensor readings, without
affecting the prediction model.

Putting together the least square loss and ‖W(s)‖1,2, we
have the following minimization problem 1:

min
W

L(W) , Lls(W) + µ

K∑

s=1

‖W(s)‖1,2 (6)

1Note that the objective is a function of both the prediction
matrices W and the bias vectors {b(s)|s ∈ S}. Since it
is much easier to optimize with respect to the bias vectors,
we concentrate on W and discard the bias vectors in the
argument. The discussion about optimizing with respect to
{b(s)|s ∈ S} can be found after Theorem 1.

Here, W is a matrix that concatenates all the prediction
matrices following the notation in (5), i.e.,

W , [W(1),W(2), · · · ,W(K)] ∈ R
KN×KN ,

and µ is a positive balancing parameter that trades off be-
tween the loss function and the L1,2 norm. A large value
of µ will result in a smaller set of selected sensors for each
state. This parameter is set by balancing between the re-
quired level of training accuracy and the number of sensors
that should be maintained in the field.

4.1.2 Cost-Sensitive Sensor Selection
We can also consider the scenario where the costs of main-

taining different types of sensors are unequal in the field. In
this case, associated with each sensor n ∈ N , we can explic-
itly assign a positive weight δn to represent the cost. This
weight can be multiplied with each column of W(s). Then,
minimizing the L1,2 norm of this cost-weighted matrix re-
sults in de-selection of the sensors with larger cost weights
by zeroing out the corresponding columns rather than the
sensors with smaller cost weights. The L1,2 norm of the
cost-weighted matrix can be written in a compact matrix
form as

‖W(s) · diag(δ1, · · · , δN )‖1,2

with diag(·) denoting a diagonal matrix with the cost weight-
s as its elements.

4.1.3 Optimization Algorithm
This section provides the details of finding the optimal so-

lution to the objective function (6). It is nontrivial to opti-
mize this objective function over W with a non-smooth L1,2

norm term, since the conventional gradient descent method
is ineffective in such cases. For example, the sub-gradient
decent can converge very slowly and the generated mini-
mizer may not fully exploit the sparseness property associ-
ated with the L1,2 norm. Thus, we present an alternative
gradient-based algorithm which can handle such cases. If
desired, the reader can skip the following derivation, and go
to Algorithm 1 directly.

At a broad level, we adopt the proximal gradient fami-
ly of algorithms. It is an optimization method that solves
the original problem via a sequence of approximations. At
the current estimate of W(l) at each iteration l, we expand
the first-order Taylor series of Lls(W). Then, the objective
function (2) becomes the following:

Qτ (W ,W(l)) , Lls(W
(l)) + 〈∇Lls(W

(l)),W −W
(l)〉

+
τ

2
‖W −W

(l)‖2F + µ
K∑

k=1

‖W(s)‖1,2

=
τ

2
‖W − G

(l)
τ ‖2F + µ

K∑

k=1

‖W(s)‖1,2 + const

(7)

Here, ∇Lls(W
(l)) is the gradient of the loss function Lls(W)

at W(l), ‖ · ‖F is the Frobenius norm, and const is a term
irrespective of W :

G
(l)
τ = W

(l) − τ−1∇Lls(W
(l)) (8)

Here, τ is a parameter that weights the quadratic term in
(7), which is usually set to a larger value than the Lipschitz
constant of the least squares loss Lls(W).



Algorithm 1 Optimization Algorithm for Problem (6)

input Choose W(0) = W(−1), t(0) = t(−1) = 1.
for l = 0, 1, 2, · · · do

// generate W(l+1) from W(l) according to the follow-
ing iterations.

Step 1 Set Y(l) = W(l) +
t(l−1) − 1

t(l)
(W(l) −W(l−1));

Step 2 Set G
(l)
τ = Y(l) − τ−1∇Lls(Y

(l));

Step 3 Solve W(l+1) as in Eq. (10);

// update the bias vector b(l)

Step 4 Set d(l) = b(l) +
t(l−1) − 1

t(l)
(b(l) − b(l−1));

Step 5 Set b(l+1) = d(l) − τ−1 ∂Lls(d
(l))

∂b
;

// update the interpolation parameter

Step 6 Set t(l+1) =
1 +

√
1 + 4(t(l))

2

2
.

end for

Since the least squares loss Lls is a differentiable function,
its gradient ∇Lls(W

(l)) in Eq. (8) can be derived easily.

Note that Qτ (W ,W(l)) is a convex function of W and

thus it has a minimizer, yielding W(l+1) for the next itera-
tion as follows:

W
(l+1) = argmin

W
Qτ (W,W(l)) (9)

Fortunately, Problem (9) has a closed-form solution. De-

note the ith column of W(l+1) by [W(l+1)]:,i. Then, we
have:

[

W
(l+1)

]

:,i
=






1−

µ

τ
∥

∥

∥

[

G
(l)
τ

]∥

∥

∥

:,i







+

[

G
(l)
τ

]

:,i
(10)

Here, [G
(l)
τ ]:,i is the ith column of G

(l)
τ defined in Eq. (8),

and (z)+ outputs the positive component of z, i.e., it out-
puts z if z > 0, and 0. otherwise. At each iteration, this
minimizer tends to yield zero-columns corresponding to the
sensors that can be excluded for each state.

When the cost weights δn, n ∈ N are considered, the
aforementioned update should be changed to

[

W(l+1)
]

:,i
=






1−

δnµ

τ
∥

∥

∥

[

G
(l)
τ

]∥

∥

∥

:,i







+

[

G
(l)
τ

]

:,i
(11)

Therefore, the column for a sensor with larger δn is more
likely to be zeroed out.

Algorithm 1 summarizes the optimization approach for
Problem (2). It is noteworthy that in Step 1, we compute

Y(l) that plays the same role of W(l) in Step 2-3 as in the
aforementioned derivation. Here, Y(l) interpolates between
the solutions in two successive steps. Such a Nesterov op-
timization strategy [13] can accelerate the convergence of
Algorithm 1 to a rate of O(1/L2) where L is the number of
the iterations. The following theorem formally states this
result.

Theorem 1 (Convergence). Let {W l} be the sequence
generated by Algorithm 1. Then for any W⋆ with L(W⋆) ≤

Algorithm 2 Sampling State Sequence

input a sequence of sensor measurements {xt|t =
1, 2, · · · , T}
Sample s0 according to Π;
for t = 1, 2, · · · , T do

Sample st according to Eq. (12).
end for

inf
W

L(W) + ǫ, we have

min
l=0,1,··· ,L+1

L(W(l)) ≤ L(W⋆) +
4Cf‖W

⋆ −W(0)‖2F
(L+ 2)2

where Cf is the Lipschitz constant of Lls(W).

Remark: The above theorem can be proved in straightfor-
ward way with a similar idea to that in [18]. The detail is
omitted here due to space limitations. This theorem shows
the convergence of Algorithm 1 to an ǫ-optimal minimizer
W⋆.

It is worth noting that the optimization with respect to
the bias vectors b = [b(1),b(2), · · · ,b(K)] can be easily
obtained since the objective function is differentiable with
respect to them. Note that the non-smooth L1,2 norm term
is independent of the bias vectors. Thus, the conventional
gradient decent algorithm is directly applicable as in Steps
4-5 in Algorithm 1 with a similar interpolation strategy.

4.2 Sampling State Sequence
In this section, we present a sequential sampling algorithm

to sample the sequence of states {st|t = 0, 1, · · · , T} which
are used to approximate the expectation in Eq. (2).

Given the current estimate of model parameters, the past
states s1:t−1 = {s1, s2, · · · , st−1} and the observations x1:t =
{x1,x2, · · · ,xt} up to time t, the posterior probability for
state st at step t can be written as

Pr(st|s1:t−1,x1:t) ∝ Ast−1,st ·

exp

(

−
1

2σ2
||xt −

R−1
∑

r=0

W (st, st−P+r)xt−P+r − b(st)||
2
2

)

(12)

The first factor on the right-hand side of the equation is the
prior transition probability between two consecutive states,
and the second factor is the likelihood proportional to the
Gaussian distribution over the remainder of the least square
prediction error. Accordingly, st can be sampled accord-
ing to this posterior distribution directly. This process is
iterated over t from 1 to T . Algorithm 2 summarizes the
algorithm of sampling the sequence of states.

It is worth noting that we can handle missing sensor mea-
surements when sampling the state at a time step t, by only
considering the observed entries in xt to compute the ‖ · ‖2
term in the exponent since the unobserved entries can be
marginalized out for a multivariate Gaussian distribution
defined by Eq. (1). This is important because sensor obser-
vations are traditionally noisy with many missing values.



Algorithm 3 Learning Model Parameter

input a sequence of sensor measurements {xt|t =
1, 2, · · · , T}
Initialize the model parameter
// Iterate between M-Step, and E-Step.
E-Step Sample the sequence of the states according to
Algorithm 2.
M-Step Apply Algorithm 1 to update the current esti-
mate of model parameter;

Algorithm 4 Dynamic Sensor Selection and Prediction

input the learned model parameter.
for each step t do

Sample the current state st according to Eq. (12);
if the new state differs from st−1 then

Sensor selection: Turn on the sensors in M(st)
corresponding to the nonzero columns in W(st); the
other sensors not in M(st) can be turned off.

end if
Data prediction: Apply the model in (1) to predic-
t the sensor measurements xt+P for P steps ahead of
time.

end for

Additionally, in the learning phase, we also need to sample
the posterior distribution over st′ with t′ < t

Pr(st′ |s1:t,x1:t) ∝ As
t′−1

,s
t′
As

t′
,s

t′+1
·

P
∏

p=0

exp(−
1

2σ2
||xt′+p

−

R−1
∑

r=0

W
(

st′+p, st′+p−P−r

)

xt′+p−P−r − b(st′+p)||
2
2)

(13)

In this case, we need to consider both the information of the
past t < t′ and the future t > t′ time steps over a sequence
of states. Specifically, the first two terms on the right-hand
side are the transition probabilities to and from st′ of the
current state, and each term in the product is the likelihood
proportional to the Gaussian distribution on the least-square
remainder from time t′ to time t′ + P .

The sampling process can be performed iteratively to sam-
ple the states a-posteriori given the sensor measurements up
to time t, and the sampled sequence s1:t can be used to ap-
proximate the expectation in Eq. (2)-(3). Markov Chain
Monte Carlo (MCMC) method provides theoretical guaran-
tee on this sampling-based approximate.

4.3 Summary
Algorithm 3 summarizes the algorithm of learning the

model parameters. Given the sampled states {st|t = 0, 1, · · · , T},
we apply Algorithm 1 to update the current estimate of mod-
el parameters. Given the current model parameters, we sam-
ple the sequence of the states according to Algorithm 2. We
iterate between these two subroutines of algorithms to find
the optimal model parameters.

5. DYNAMIC MODEL
With the learned model from the previous section, we can

apply it to dynamically select the sensors and predict the
sensor data streams ahead of time. We summarize our ap-

proach to dynamic sensor selection and prediction in Algo-
rithm 4.

For dynamic sensor selection, at each time t, if the current
state changes from the previous one, the set of active sensors
should also change accordingly. Those sensors that are not
in the active set M(st) can be turned off without affecting
the prediction of the future sensor measurements. This is
also discussed in the previous section.

At each step t, the model is applied to predict the sensor
measurements x̂t+P at time t+ P , i.e., P -step ahead of the
current time t, by substituting t+P for t in Eq. (1). Specif-
ically, we take the expectation of xt+P over the state st+P

at time t+ P ,

x̂t+P , E
st+P

[xt+P |s1:t]

=
R−1∑

r=0

E
st+P

[W (st+P , st−r)xt−r|s1:t] + E
st+P

[b(st+P )|s1:t]

(14)
Here, given the states s1:t up to time t, the distribution of

state st+P only depends on st according to the Markovian
property of the state-evolution model, i.e.

Pr(st+P |s1:t) = Pr(st+P |st) = [AP ]st,st+P
(15)

where A is the transition matrix, and [AP ]st,st+P
is the

entry of AP corresponding to the sender state st−r and the
receiver state st+P . Then, we have:

E
st+P

[W (st+P , st−r)xt−r|s1:t]

=
∑

st+P ∈S

Pr(st+P |s1:t)W (st+P , st−r)xt−r

(16)

and

E
st+P

[b(st+P )|s1:t] =
∑

st+P ∈S

Pr(st+P |s1:t)b(st+P ) (17)

Plugging Eq. (16)-(17) back into Eq. (14), we get the
estimated sensor measurement at time t+ P .

5.1 A Special Case : Static Sensor Selection
So far, we have focused on a dynamic sensor selection

model, in which different sets of sensors can be selected for
different states. However, in some applications, we may be
interested in a static sensor selection model, where a fixed
set of sensors are selected no matter in which state the sen-
sor network might be in. For this purpose, we can stack all
the prediction matrices in the column direction, and apply
a L1,2 norm to enforce all the matrices have the same set
of zero-columns. Then, the sensors corresponding to these
zero-columns can be excluded without affecting the predic-
tion of the future sensor readings. In this spirit, the static
sensor selection is a special case of its dynamic counterpart.
The corresponding optimization algorithm does not need to
change much to handle the similar stacked L1,2 matrix norm.

Note that, although this is a static sensor selection mod-
el, we can still use the state evolution model in Definition
1 to capture the dynamics of the sensor network, and the
state-driven prediction model (1) to dynamically predict the
sensor signals. The only difference is that the set of selected
sensors will not change as the states evolve. In the experi-
ment, we will compare between the dynamic and the static
model.



Table 1: ICU sensors for monitoring patient health
conditions.

sensor id abbreviation measurement

1 Hr heart rate
2 Temp body temperature
3 SpO2 saturation of peripheral oxygen
4 BPd diastolic blood pressure
5 BPs systolic blood pressure
6 BPm mean blood pressure
7 RESP respiration

6. EXPERIMENTS
In this section, we conduct experiments to test the pro-

posed sensor selection and prediction model with two real
sensor networks. First, we will introduce the data sets col-
lected from these two sensor networks. We will explain how
they are collected and some statistics about them.

6.1 Data Sets
Figure 2 shows three examples of a pair of sensor data

time-series (top row) and their correlations (bottom row)
extracted from the two datasets. The datasets exhibit both
periodic and gradually-changing patterns of the correlations
between sensors.

6.1.1 Oil drilling rig sensor network
This sensor network is deployed on oil rigs, and is used

is used to monitor the status of the oil drilling system, and
diagnosing and predicting the potential risk of dysfunction.
The sensor network consists of sensors deployed at the sur-
face, as well as sensors along the drill string, that operate
within the wellbore in the subsurface of the earth. As the
drill moves for vertical and sometimes horizontal drilling,
and encounters different formations, the position and prop-
erties of these sensors with relation to the earth’s surface
changes - affecting the observed measurements, and their
correlations.

We consider a set of 33 such surface and wellbore sensors
and demonstrate how our state based sensor selection ap-
proach can enable significant reductions in the number of
sensors needed, while minimizing prediction error.

6.1.2 ICU sensor network
The second data set is generated by medical sensors used

to monitor the status of patients in ICUs. We collected the
readings of seven different types of ICU sensors (see Table 1)
from 357 patients, which closely monitor the health condi-
tions ranging from heart rate, blood pressure to respiration.
For different patients, the length of sensor measurements
vary considerably. Some patients only have a few hundred
measurements for each sensor, while others have several mil-
lion measurements. We wished to track and predict the main
trends of each patient’s states, and select a set of sensors
whose readings are the most critical to predict these states.
It is often beneficial to understand which sensors contain key
indications on the health condition of the monitored patient
in ICUs.

6.2 Results on Oil Drilling Rig Sensors
Figure 3 presents the comparison of error rates among the

following algorithms:
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Figure 4: Active sensors in each state for oil drilling
rig sensor dataset: the red cells in each row repre-
sent the active sensors for a state.

• Sampled Uni-ARM: the baseline benchmark. This mod-
el uses an auto-regressive model (ARM) [12] to predict
the future sensor readings, and a univariate ARM is
created to model each individual sensor. Also, at each
time step, a subset of sensors is selected in random.

• Sampled Multi-ARM: this model is the same as Sam-
pled Uni-ARM, except that a multi-variate ARM is
created to model the sensors simultaneously.

• Uni-ARM PES: this model uses a univariate model for
each individual sensor, but a power-efficient selection
(PES) criterion is adopted to select a subset of the
most critical sensors that can provide the best accurate
prediction over time on the future readings [1].

• Multi-ARM PES: It is the same as Uni-ARM PES,
except a multi-variate ARM is used to model the dy-
namics of sensor readings over time [1].

• SDSSP (State-driven sensor selection and prediction):
this is the proposed method in this paper.

In Figure 3(a), the error rates are compared versus the
varying the number of active sensors selected by different
algorithms. Since the proposed SDSSP is a dynamic sensor
selection model, the number of active sensors keep changing
over time with the evolving states, so that the number of
active sensors in the figure is an average number of sensors
selected by the states over time. The other algorithms are
compared by setting the numbers of active sensors to in-
tegers nearest to these average numbers. Figures 3(b)-3(c)
compare the performances with varying window sizes R and
prediction lags P as in Eq. (1). The results show the pro-
posed SDSSP consistently outperforms the other methods.

Figure 4 shows the active sensors in each state derived
from the oil drilling sensor dataset. The sensors indexed
from 1− 8 and 20− 33 are global sensors that are deployed
on the surface of the rig platform to monitor the operation of
the whole oil drilling system. On the other hand, the sensors
indexed from 9− 19 are deployed in the vertical or curved-
lateral segment of the wellbore. We obtain the active sensors
by setting the cost for each undersurface sensor to twice that
for each global sensor. All five states, except state 4, select
both global and vertical sensors; on the contrary, state 4
only selects the vertical sensors, implying that this state
corresponds to a drilling operation in the vertical borehole
reaching deep into the earth’s subsurface.

Figure 5 compares the error rates between the dynamic
model (SDSSP) and the static model as presented in Section
5.1 where a fixed set of sensors are selected. The comparison
is made by varying the window size R and the prediction
lag P . Clearly, the dynamic model usually provides more
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Figure 2: Examples of oil rig sensor dataset (first two columns) and ICU sensor dataset (the last colum-
n). Subfigure (a)-(c): a pair of sequences of sensor readings; Subfigure (d)-(f): the sequence of Pearson’s
correlation between the two sensors.
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(a) Prediction Lag P = 1, Window
Size R = 3
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(b) Prediction Lag P = 1
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Figure 3: Comparison of error rates by the different algorithms on the oil drilling rig sensor dataset: (a) the
error rates with varying numbers of active sensors (achieved with P = 1 and R = 3); (b) the error rates with
varying window sizes R when the prediction lag is fixed to P = 1; (c) the error rates with varying prediction
lags P when window size is fixed to R = 3.
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Figure 7: Active sensors in each state for ICU sen-
sor dataset: the red cells in each row represent the
active sensors for a state.

accurate prediction on the sensor data streams over time
than its static counterpart.

6.3 Results on ICU Sensors
Similar to the experimental set up for oil drilling rig sen-

sors, Figure 6 presents the results in comparison with other
algorithms. Through the comparison, SDSSP outperforms
the other algorithm on this ICU sensor dataset in terms of
different number of active sensors, varying window sizes and
prediction lags.

Figure 7 illustrates the active ICU sensors in each state,
where the indices of these ICU sensors have been shown in

Table 1. We can find that for the first two states, the select-
ed sensors usually measure the instant conditions of the pa-
tients, such as heart rates and diastolic/systolic blood pres-
sure. On the other hand, the third state selects the sensors
that are relevant to a relatively long-time health conditions,
including mean blood pressure and body temperature. In
accordance with these findings, we observe that when the
monitored patient is in a stable condition (i.e., the sensor
readings do not change much), state 3 is often activated;
otherwise, patients are more likely in instant state 1 or s-
tate 2. This is yet another example of the kind of semantic
interpretation that one can often associate with the hidden
states that are discovered in a data-driven manner.

Figure 8 compares the proposed dynamic model with the
static counterpart on seven different ICU sensors with the
window size P and prediction lag R both set to 1. Most of
time, the dynamic model achieves better performance than
the static model on these seven ICU sensors.

6.4 Effect of the Number of States
In the aforementioned experiments, the number of states

are set based on the performance on an independent valida-
tion set. It is also intriguing to study the change of perfor-
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(a) P = 1, R = 1
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(b) P = 1, R = 2
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(c) P = 1, R = 3
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(d) P = 2, R = 1
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(e) P = 2, R = 2
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Figure 5: Comparison between dynamic and static models for predicting P -step measurement with a window
of length R. The six figures plot the average prediction errors over 33 sensors with varying P and R on the
test time series. The result shows the dynamic prediction model usually has smaller prediction errors than
its static counterpart most of time.
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Figure 6: Comparison of error rates by the different algorithms on the ICU Sensor dataset: (a) the error
rates with varying numbers of active sensors (achieved with P = 1 and R = 3); (b) the error rates with varying
window sizes R when the prediction lag is fixed to P = 1; (c) the error rates with varying lag predictions P
when window size is fixed to R = 3.
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Figure 9: Change of average error rates versus dif-
ferent number of states.

mance when the number of states varies (cf. Figure 9). To
ensure fair comparison between different numbers of states,
the average number of active sensors is set to 8 on the oil
drilling dataset and to 3 on ICU sensor dataset. From the
result, we observe that neither too many nor too few states
is adequate to perform well. The model with too few states
underestimates the system complexity, making it incapable
of capturing the conditions of a rapid-changing system. On
the other hand, a model with too many states tends to over-
fit with the sensor time-series data.

7. CONCLUSION
This paper presents a state-driven dynamic sensor selec-

tion and prediction model in which a subset of active sensors
are dynamically selected over time. A state-stacked sparse-
ness algorithm is developed to select the active sensors by
minimizing the prediction error over time in a state-driven
dynamic system. We derive an efficient algorithm which con-
verges at a rate of O(1/L2) to an optimal sensor selection
and prediction model, where L is the number of iterations.
We apply the algorithm to real-world applications of two
different industry domains – oil drilling sensors and ICU
sensors. The results show that the algorithm can achieve
the best performance in terms of error rates in tracking and
predicting the sensor readings over time.
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