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ABSTRACT
Attention Deficit Hyperactive Disorder (ADHD) is one of
the most common childhood disorders and can continue through
adolescence and adulthood. Although the root cause of
the problem still remains unknown, recent advancements
in brain imaging technology reveal there exists differences
between neural activities of Typically Developing Children
(TDC) and ADHD subjects. Inspired by this, we propose
a novel First-Take-All (FTA) hashing framework to investi-
gate the problem of fast ADHD subjects detection through
the fMRI time-series of neuron activities. By hashing time
courses from regions of interests (ROIs) in the brain into
fixed-size hash codes, FTA can compactly encode the tem-
poral order differences between the neural activity patterns
that are key to distinguish TDC and ADHD subjects. Such
patterns can be directly learned via minimizing the training
loss incurred by the generated FTA codes. By conducting
similarity search on the resultant FTA codes, data-driven
ADHD detection can be achieved in an efficient fashion. The
experiments’ results on real-world ADHD detection bench-
marks demonstrate the FTA can outperform the state-of-
the-art baselines using only neural activity time series with-
out any phenotypic information.
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1. INTRODUCTION
Recent advancements in brain imaging technology, one of

the greatest efforts in Neuroscience, aim to uncover features
unique to certain neurophysiological phenomena [4, 20]. The
intuition is that the neural activity pattern of a healthy hu-
man subject ought to appear different from that of a pa-
tient suffering from some neural disorder, such as Attention
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Figure 1: ROIs (AAL[29]) of a human brain and
their fMRI time courses. FTA hashes time courses
into fixed-size hash codes by encoding temporal or-
der differences between latent patterns among them.

Deficit Hyperactive Disorder (ADHD) and Alzheimer’s dis-
ease.

Categorized alongside other neurodevelopmental disorders,
ADHD is one of the most common brain diseases. It man-
ifests early and is typically first diagnosed in one’s child-
hood. The predominant effects consist of sustained difficulty
in maintaining focus, often offering difficulties assimilating
at school, at home, or within the community. Fortunately,
despite lacking a cure, brain imaging technology provides an
opportunity to timely observe and diagnose ADHD[6, 7].

Several methods for recording sequences of neural activ-
ity from the brain exist. Generally, they range from invasive
to non-invasive procedures. Whilst the data from invasive
techniques such as Electrocorticography (ECoG) or multi-
electrode arrays possess higher quality data [24], the op-
portunity to collect such data seldom arises. By nature of
the procedure, it is much more practical for researchers and
medical practitioners to opt for non-invasive techniques such
as functional Magnetic Resonance Imaging (fMRI). fMRI
indirectly measures changes in neural activity by detecting
changes in blood flow caused by increased activations of neu-
rons during specific tasks (or resting-state conditions) [27,
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9]. In this context, fMRI time-courses 1 offer a feature-rich
representation of high level functional organization in the
brain (Figure 1).

Considering the representations, we aim to exploit its rich
nature for the task of ADHD diagnosis as a pattern classi-
fication problem [22]. Utilizing the structure of the resting-
state fMRI time-courses, we generate hash codes encoding
the temporal structure of the data. These hash codes can
then be compared to detect similarities and differences be-
tween the fMRI time-courses of healthy patients versus those
diagnosed with ADHD. It is known that neural connections
exist whether or not regions of the brain are functionally ac-
tive, hence forth the resting-state fMRI provides a controlled
dataset to test for fundamental differences in functional neu-
ral networks in the brain.

Tasked with hashing time-series data, our approach cen-
ters on fast detection based on retrieval of the similar dis-
order patterns from a database of brain neural imaging ac-
tivities. Specifically, we propose the First-Take-All (FTA)
hashing method for encoding varied-length fMRI sequences
into fixed-size hash codes. The problem of fast matching
similar fMRI sequences boils down to a fast search of simi-
lar hash codes based on their Hamming distances that can
be calculated efficiently.

Specifically, the algorithm first projects an input sequence
of varied length onto different subspaces, each representing
a sequence of latent patterns. After encoding the tempo-
ral order of these patterns to hash the fMRI time-courses,
the pattern that appears first among a selection of patterns
is used to index the time-course 2. This scheme can yield
a compact encoding of temporal relations between the se-
lected patterns that really matter in distinguishing between
healthy individuals and those diagnosed with the ADHD.
The optimal pattern projections will be learned to result in
the hash codes that minimize the diagnosis errors. In this
way, FTA allows for not only high detection rates, but a scal-
able solution for detecting fMRI sequences. Since the pro-
jections are learned as opposed to randomly generated, the
solution scales well with large-scale input fMRI sequences
using compact hash codes.

Suitably, the objective of this paper is to provide a scal-
able and efficient [18, 28] solution to the problem of detect-
ing neurodevelopmental disorders (specifically ADHD) via
fMRI time-courses. Doing so also reverberates to improved
success in brain imaging technologies. The proposed tempo-
ral order-based hashing algorithms are much more generic,
providing a new framework for fast matching and detection
to other forms of time-series data. In this paper, the method
has implications on functional neural analysis[14, 17]. Be-
ing able to reliably infer causal relationships between brain
structures and functions presents an interesting opportunity
for further investigations, the range of which include areas of
classification outside neurodevelopmental disorders [13]. Ul-
timately, learning the projections to hash a time-series space
efficiently provides important practicality to the design.

1In medical imaging terminology, a “time course” refers to
an obtained sequence for an imaged area. In this paper, we
will use this term interchangeably with “time series” when
there is no confusion in the context.
2Without loss of generality, we can also designate the second
or the third appearing pattern or so on to hash a fMRI
sequence. As a convention, we choose the first-appearing
pattern in this paper.

The contributions of this paper are:

1. We propose a novel FTA hashing algorithm to hash
time series with varied length into fixed-size hash codes
by encoding the temporal order of the latent patterns
inside the time series.

2. In order to acquire the optimal projections, we formu-
late it as a learning problem whose training loss can
be minimized in an efficient fashion.

3. We perform extensive experiment studies on bench-
marks of ADHD detection and demonstrate the supe-
rior performance of the proposed FTA hashing with
several evaluation metrics.

The remainder of this paper is organized as follows: Sec-
tion 2 briefly reviews the related work. The ADHD detection
paradigm including FTA hashing algorithm is introduced
and discussed in Section 3. Section 4 includes the learning
algorithm for searching optimal projections. Experiments
and performance studies are presented in Section 5. Finally,
Section 6 concludes the paper.

2. RELATED WORK
In this section, we review several related topics pertinent

to the task of ADHD detection. Among these, the over-
all theme fosters support for classification analysis of fMRI
time-courses.

It is known that multivariate data mining and machine
learning methods have been used to approach the classifi-
cation of fMRI data[13, 7]. Similar to the approach in the
paper, multivariate methods presume from a core tenet of
neuroscience that neural data encodes itself across larger
functional regions in the brain. Intriguingly, the motivation
behind utilizing multiple ROIs in test and training exists
within other works as well; as ROI selection can be viewed
as a form of feature selection [13, 25]. Similar works [7] also
suggest the widespread adoption of multivariate techniques
including Support Vector Machines (SVMs) [5] and Linear
Discriminant Analysis (LDA) [3] in spite of the traditional
uni-variate alternatives. Fueling this shift was a dissatis-
faction with how univariate models rely exclusively on the
information contained in time-courses contained in individ-
ual voxels[7].

In tune with our method’s focus on preserving tempo-
ral structure is the Dynamic Time Warping (DTW) to find
similar patterns between two time series [2]. The idea is to
create a sequence alignment algorithm that preserves and
efficiently discovers knowledge from potentially large data
archives. The approach used in this paper (FTA) maintains
similar motivations, insofar as it aims to solve the task of
presenting a model for efficient and scalable knowledge dis-
covery in the domain of neural data.

The related works presented offer several intriguing points
of support to our investigation. Foremost, the premise has
been set for the intuitions behind fMRI analysis for ADHD
detection[7]. For example, [10] extracts features from fMRI
time courses to improve the ADHD detection rate. Mean-
while, the method proposed by [12] combines both unsu-
pervised and supervised algorithms and achieves best per-
formance in ADHD-200 Global Competition. This reliably
shows that the problem of knowledge discovery in brain
imaging can be improved through utilization of Machine



Learning models. In addition, other efforts suggest that
a detection scheme for analysis of fMRI time-courses can
be expanded to other neural datasets and disorders[10, 7].
This offers an expanded utility to the model presented in
this paper, in which the FTA can be used on other prob-
lems within Neuroscience and a host of other topic areas,
all whilst preserving efficiency. Lastly, DTW offers an ele-
ment of distinction between former methods in time-series
analysis versus those of which focus specifically on preserv-
ing temporal order during encoding of time-series data [2].
In doing so, FTA provides clear advantages over methods
which eschew these temporal features [16].

3. FIRST-TAKE-ALL: ADHD DETECTION
BY TIME-SERIES HASHING

In this paper, we introduce a novel hashing-based paradigm
to automatically identify ADHD subjects. The structure of
our method can be summarized as following: First, brain at-
lases containing a number of Regions of Interest (ROIs) will
be constructed and corresponding time courses of each ROI
will be extracted based on the ADHD subjects’ resting state
fMRI data of the brain. Then, we propose a new tempo-
ral order-preserving hashing algorithm called First-Take-All
to hash time courses into binary sequences. With those se-
quences, we compare the distance (similarity) between them
to determine whether a patient is an ADHD subject.

3.1 Brain Atlas Construction
and Time Course Extraction

In brain neuroanatomy, many approaches, such as auto-
mated anatomical labeling (AAL) [29], Eickhoff-Zilles (EZ)
[11], Talairach and Tournoux (TT) [21] and Harvard-Oxford
(HO) [15], have been proposed to construct brain atlases by
using structural anatomic or functional information. After
that, voxels in the regions that have structural or functional
similarities will be grouped into Regions of Interest (ROIs)
and the time courses of these ROIs can be extracted from
the voxels of the subjects’ resting state fMRI data. Since the
brain atlas construction and time-course extraction are not
the focus of this paper, we will employ the existing brain at-
lases pre-constructed by the neuroanatomy community. The
details will be presented in Section 5.

With time courses of ROIs extracted, every subject can
be mapped to a unique vector (multivariate) sequence which
describes the brain activities of that subject. For exam-
ple, X = [x1,x2, · · · ,xT ] can be a subject’s time-courses
of ROIs, where each xt ∈ RD, t = 1, · · · , T represents the
brain activities of that subject in D different ROIs. For our
convenience, we will refer to Time Courses of ROIs as TCs
in the rest of this paper for short.

3.2 Temporal Order-Preseving Hashing
Now we propose a hashing algorithm for time-series data

which can map a TC into a fixed-size hash codes regard-
less of its original length. It can be roughly divided into 2
parts. First, a TC will be projected into several subspaces
to produce a set of projection sequences. Then, we generate
hash codes for entire TC by conducting an operation called
First-Take-All (FTA) on those projection sequences.

Figure 2: Comparison between projections gener-
ated by salient and nonsalient patterns. The red
solid line represents the projection of a salient pat-
tern with a small variance, while the blue dotted
line represents the projection of a non-salient pat-
tern with a large variance over the time axis.

Sequence Projection
Consider a TC X = [x1,x2, · · · ,xT ] of length T described
in Section 3.1. The first step is to project X into sev-
eral subspaces defined by an optimized projection matrix
W = [w1, · · · ,wK ] ∈ RD×K . Each wk ∈ RD is a projection
vector taken from W that generates a sequence sk = wᵀ

kX
for k ∈ {1, · · · ,K}. The way to find the optimal W will be
given in section 4.

Intuitively, each sequence sk represents the score over the
occurrence of a latent pattern3 wk, and any TC is composed
of a sequence of temporally-ordered patterns. The orders
of certain unknown neural activation patterns often matter
in ADHD detection. Thus, we seek to find these relevant
patterns as well as compactly represent their orders in a
hash code space, where the similarity between TCs can be
directly computed by their Hamming distance.

To model the temporal order of patterns, first we need
to locate the moment they appear. Here we use softmax to
compute the probability that a pattern k appears at time t:

pk,t =
exp(wᵀ

kxt)∑T
t′=1 exp(wᵀ

kxt′)
(1)

Let u = [1/T, 2/T, · · · , t/T, · · · , 1]ᵀ be the normalized
timescale, each entry of which denotes a relative time mo-
ment on the range of [0, 1] in an input sequence of length T .
Then, the expected moment mk that the pattern k appears
can be calculated as

mk = Et∼pk,t

[
t

T

]
=

T∑
t=1

t · pk,t
T

= uᵀpk (2)

where pk = [pk,1, · · · , pk,T ]ᵀ is a vector containing the prob-
ability of pattern k appearing at each moment.

Note that a pattern related with ADHD detection usu-
ally corresponds to a salient pattern of neural activation in
brain ROIs. Thus, we expect that it should have a sharp ap-
pearance in the projection sequence such as the p1 shown in

3These patterns are latent because they are unlabeled.



figure 2. Accordingly, we propose to minimize the variance
of pattern occurrence

vk = Vart∼pk,t

[
t

T

]
=

T∑
t=1

(t−mk)2 · pk,t
T 2

(3)

together with the other criteria to learn the projection ma-
trix W in Section 4. This regularization term is more likely
to generate a salient pattern that really matters in detecting
ADHD.

First-Take-All Temporal-Order Comparison
Now putting the expected appearing moments of K patterns
into m = [m1, · · · ,mK ], we wish to develop an ordinal hash-
ing algorithm directly encoding their temporal order for a
TC. Specifically, we perform a First-Take-All (FTA) com-
parison to rank the patterns by their temporal order – the
pattern whose expected appearing moment comes first wins
the FTA comparison, and its index is used to hash the entire
TC.

For example, when we have two projected sequences (i.e.,
K = 2), FTA simply encodes the pairwise order between
two corresponding patterns. When K > 2, FTA makes a
higher-order comparison to decide which pattern appears
first. Note that the output FTA hash code is not binary;
instead it is a K-ary code. For this reason, we call K the
FTA base.

For a pairwise FTA comparison involving only two pat-
terns, knowing the first coming pattern completely encodes
the temporal order between these two patterns. This can
be generalized to high-order comparison if more than two
patterns are involved for choosing the first-coming pattern.
Such a high-order FTA comparison could generate more
compact code to distinguish between different types of TCs.
For example, suppose there are three types of TCs have dif-
ferent orders of patterns 1 – 2 – 3 – 4, 1 – 3 – 2 – 4 and 1
– 4 – 3 – 2, respectively. Then an effective FTA comparison
only needs to make a order-3 comparison between the last
three patterns 2, 3 and 4, which will output the FTA code
2, 3 and 4 to distinguish these three types of TCs. In this
case, there is no need to make comprehensive comparisons
between all possible pairs of patterns.

However, the patterns whose orders matter in classify-
ing different types of TCs are unknown a-priori. A suitable
group of patterns must be learned so that the same type of
TCs will have similar pattern orders. We will discuss the
detail about the learning of these patterns in Section 4.

Mathematically, the index of the first-appearing pattern
can be expressed as

h = arg min
θ

θᵀm = θᵀ[uᵀp1| · · · |uᵀpK ] = uᵀPθ (4)

where θ ∈ {0, 1}K ,1ᵀθ = 1 and h is an 1-of-K indicator
of the FTA winner – its unique nonzero entry is indexed
by the first-appearing pattern in the input TC, and P =
[p1, · · · ,pK ].

An algorithmic description for the entire FTA hashing
procedure is shown in Algorithm 1. Multiple FTA codes
can be generated with a set of projection matrices. The
code length L in the algorithm represents the number of
hash codes generated for a TC.

Figure 3 illustrates the FTA comparison when K is set to
3. Here p1, p2 and p3 in Figure 3 are the probability of each
pattern appearing over the time axis t. From them, we can

Algorithm 1 First-Take-All Hashing

1: Input: TC X, code length L, a set of projection matri-
ces {Wi}Li=1

2: Initialize: b← empty sequence
3: for i = 1 to L do
4: S = Wᵀ

i X
5: for each row sk of S, calculate mk through Eq.(1)

and Eq. (2)
6: k∗ ← arg min

1≤j≤K
mk.

7: b← bk∗ (concatenation)
8: end for
9: return b

Figure 3: Illustration for First-Take-All Temporal-
Order comparison when K is set to 3

get their expected pattern appearing moments m1, m2 and
m3, which are approximately shown in the figure, where we
have m2 < m3 < m1. By the FTA comparison, we choose
the index of m2 as the hash code for the TC, which is 2.

Before the end of this section, let us analyze the compu-
tational complexity of hashing a sequence by FTA. First, it
costs O(TDK) to apply the projection matrix to an input
TC X. Then finding the expected moments of K projected
sequences costs O(TK). It also costs O(K) to find the first-
appearing pattern which wins FTA comparison out of K
candidates. Hence, FTA totally costs O(TDK) to hash an
input TC up to a constant factor.

4. LEARNING OPTIMAL PROJECTIONS
A learning algorithm to find out the optimal projections

W will be presented in this section, including the formula-
tion of the optimizing problem and its efficient solution.

4.1 Training Loss
Given a TC X and the expected appearing moments of K

patterns m = [m1, · · · ,mK ], which is acquired from a fixed
W. Then we can apply the following softmin to calculate
the probability that the kth pattern will appear first:

hk , P (pattern k comes first|X) =
exp(−mk)∑K

k′=1 exp(−mk′)
(5)

The smaller themk, the more likely the pattern k will appear
first.



Now consider a pair of TCs X(i) and X(j), along with
their label si and sj . We hope that through our learning
algorithm, the resultant FTA hash codes can reflect the label
similarity between two TCs. In other word, when si = sj ,
there is a greater chance that the same pattern will appear
first in both X(i) and X(j); otherwise, different patterns will
appear first if si 6= sj if si 6= sj .

Mathematically, it is easy to see that h
(i)
k h

(j)
k is the proba-

bility that the kth pattern will appear first in both X(i) and
X(j). Suppose hij represents the probability that the same
pattern will appear first in both TCs. It can be computed
as by summing up over all patterns

hij =

K∑
k=1

h
(i)
k h

(j)
k (6)

Our goal is to maximize hij when si = sj and to minimize
it when si 6= sj . This results in the following objective
function

Oij = (1− hij)sij (hij)(1−sij) (7)

Here, sij = 1 i.f.f. si = sj ; and sij = 0 otherwise. We wish
to minimize it for all TC pairs. Suppose the training set is
T = {X(i), si}Ni=1 with N TCs. Then the total logarithmic
training loss over T becomes

L =

N∑
i=1

N∑
j=1

[
sij log

(
1− hij

)
+ (1− sij) log

(
hij
)]

(8)

Minimizing it can minimize the pairwise diagnosis errors on
the training set incurred by the resultant FTA hash codes.

4.2 Projection Orthogonality
In addition to the minimization of training loss, it is worth

mentioning that the redundancy between the learned pat-
terns also affects the FTA hashing performance. With a set
of redundant patterns learned, their projection sequences
would be highly correlated or even identical to one another.
This could reduce the degree of the temporal order being dis-
tinguished between different patterns. In this case, a smaller
perturbation or local warping would change the temporal
orders significantly, thereby degenerating the FTA’s perfor-
mance in presence of noises.

To improve the resiliency of FTA against perturbations or
noises on TCs, we wish to reduce the redundancy between
patterns by minimizing the following normalized inner prod-
ucts between projection vectors

Ω =

K∑
k 6=k′=1

(
wᵀ

kwk′

‖wk‖‖wk′‖

)2

(9)

Clearly, minimizing it can make the learned projection vec-
tors as orthogonal to each other as possible, thereby mini-
mizing the redundancy between the corresponding patterns
4.

4.3 Putting Together
In addition to the training loss (8) and the projection

orthogonality (9), we also consider to minimize the variance
4The projection orthogonality can also be imposed as a hard
constraint in the optimization problem. However, by exper-
iments, we found that the performance is more stable by
posing it as a soft term that penalizes the projection redun-
dancy in the objective function.

Algorithm 2 Learning Optimal Projections

1: Input: training TC set χ = {X(i), si}Ni=1, K, learning
rate α

2: Initialize: Randomly initialize W = [w1, · · · ,wK ],
wk ∈ RD×1, k = 1, · · · ,K

3: repeat
4: Select training pair X(i), X(j).

5: P (i) = [p
(i)
k,t]K×T , P (j) = [p

(j)
k,t]K×T , calculate p

(i)
k,t

and p
(j)
k,t based on Eq.(1)

6: for each wk, k = 1, · · · ,K, compute ∂F
∂wk

with p
(i)
k,t

and p
(j)
k,t based on Eq.(12), (13), (14), (15), (16), (17),

(18), (19).
7: ∇WF ← [ ∂F

∂w1
, · · · , ∂F

∂wK
]

8: W←W − α∇WF
9: until Convergence.

of pattern occurrences as shown in Eq. (3). This can be
expressed as the following total variance over the training
set:

V =

N,K∑
i,k=1

v
(i)
k

where v
(i)
k is the occurrence variance of pattern k in the

ith TC of training set. As aforementioned, minimizing the
variance of pattern occurrences can generate salient patterns
for ADHD diagnosis.

Then putting them together, we can define the following
minimization problem to learn the projection matrix W

min
W
F , L · · · training loss

+ γ Ω · · · Projection Orthogonality

+ η V · · · Variance of pattern occurences

(10)

where two positive coefficients γ and η are two hyper pa-
rameters that control the contributions of the projection
orthogonality and the minimization of pattern occurrence
variance.

4.4 Optimization
We adopt the stochastic gradient descent method to mini-

mize F as to find the optimal projection W = [w1, · · · ,wK ] ∈
RD×K . For each training iteration, we randomly pick up
a pair of TCs and their labels and calculate the gradient
∇WF . Since F is differentiable w.r.t. W, it allow us to
calculate ∇WF , leading to an efficient learning procedure.
All equations needed to calculate ∇WF can be found in Ap-
pendix A and the entire optimization procedure is described
in Algorithm 2.

The above paragraph depicts the training algorithm for
a projection matrix resulting in one FTA hash code. The
above learning algorithm can be used as a subroutine in a
standard ensemble method like AdaBoost. This will yield
multiple FTA codes for a TC. The similarity between TCs
can be computed with the Hamming distance between their
concatenated FTA codes. Then, ADHD can be fast detected
by retrieving the similar TCs from a labeled database.

5. EXPERIMENTS
In this section, we demonstrate the effectiveness of the

proposed method by conducting experiments on ADHD 200



dataset, a dataset developed for ADHD detection. First we
give a brief introduction on ADHD dataset. Then we discuss
the experiment setting. We compare the proposed method
with several supervised and unsupervised baselines with dif-
ferent evaluation metrics. Finally, we study the impact of
the hyper-parameters K and L on the performance.

5.1 Datasets and Background
We evaluate the proposed FTA approach on ADHD-200

dataset. ADHD-200 was initially prepared by ADHD-200
Consortium[23] for the ADHD-200 Global Competition, a
competition that aimed to improve the understanding of the
neural basis of ADHD through the implementation of the sci-
entific discovery. It contains 776 records of the resting-state
fMRI and anatomical data across 8 independent imaging
sites, 491 of which come from typically developing individ-
uals and 285 from children and adolescents diagnosed with
ADHD (ages: 7-21 years old). Accompanying phenotypic
information includes: diagnostic status, dimensional ADHD
symptom measures, age, sex, intelligence quotient (IQ) and
lifetime medication status. Preliminary quality control as-
sessments (usable vs. questionable) based upon visual time-
series inspection are included for all resting state fMRI scans.
An additional 197 individuals from six imaging sites were re-
leased without the diagnosis labels during the competition
for testing purposes and their labels were released separately
afterwards. More information on the dataset can be found
at http://fcon 1000.projects.nitrc.org/indi/adhd200/.

In order to bring the ADHD-200 Global Competition to a
wider audience, The Neuro Bureau5 made preprocessed ver-
sions of the competition data freely available to the general
public to help those whose specialities lay outside of resting-
state fMRI analysis to bypass technical obstacles. There are
several preprocessed datasets available which were prepro-
cessed by different pipelines. In order to fairly compare the
proposed method with the baselines, we choose the dataset
preprocessed by Athena pipeline[1] which is also used by
the baseline methods. More information about the Athena
pipeline can be found at Neuro Bureau’s website6.

5.2 Experimental Setting and Baselines
For the sake of fair comparison, we follow the experiment

setting similar with the baselines. For the proposed FTA
hashing, we determine the values of hyper parameters K, L,
γ and η by conducting 5-fold cross validation on the train-
ing set. As mentioned in section 3.1, the TCs we used for
evaluation were extracted from the pre-constructed brain
atlas which was built with automated anatomical labeling
(AAL)[29]. The way to extract TCs is averaging the time
courses within each ROI voxel6. Note that the AAL atlas
was constructed using anatomic and cyto-architectonic in-
formation and did not incorporate functional information.
Thus the resultant TCs do not contain any prior phenotypic
information which may impact the evaluation. Based on the
cross validation, FTA base K and code length L are set to
2 and 200 respectively.

We compare the proposed method with following algo-
rithms:

• Dynamic Time Warping (DTW)[26]: A well known

5http://www.neurobureau.org/
6http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:
AthenaPipeline

time series alignment technique that computes optimal
distance between two time series of different lengths
while preserving their temporal order.

• Derivative Dynamic Time Warping (DDTW)[19]: This
method uses derivatives of the original time series to
improve alignment by DTW.

• Canonical Time Warping (CTW)[31]: This method
combines canonical correlation analysis (CCA) with
DTW.

• Method from Johns Hopkins University (JHU)[12]: The
winner of ADHD-200 Global Competition which achieved
the state-of-the-art performance.

• Attributed Graph Distance Measure (AGDM)[10]: This
method proposed a graph based feature called Attributed
Graph Distance Measure which can be used to classify
ADHD subjects.

Note that DTW, DDTW and CTW are unsupervised meth-
ods while JHU and AGDM are supervised. Following the
settings of these baselines, we evaluate the proposed method
with four statistical metrics: Prediction Accuracy, Speci-
ficity (= True Negative Rate), Sensitivity (= True Posi-
tive Rate) and J-Statistic (= Specificity + Sensitivity - 1).
Among them the Prediction Accuracy is the primary met-
ric for scoring. Note that the detection rate used in [10] is
identical to prediction accuracy.

5.3 Comparison with Unsupervised Baselines
We begin our evaluation by demonstrating comparison re-

sults with the unsupervised baselines. As mentioned in Sec-
tion 5.1, the training set consists of 8 subsets collected from
different sites while the test set consists of 6 subsets. We
implement FTA in Matlab and use the Matlab implementa-
tion of DTW, DDTW and CTW provided by [30] to conduct
the experiments. The training and testing are performed on
the training and testing subsets across all the eight imaging
sites. The hardware configuration for the experiment is In-
tel i7-4790 CPU at 3.6GHz and 8GB RAM. Table 1 shows
all four evaluation metrics and the computing time of three
unsupervised baselines and the FTA.

Metric DTW DDTW CTW FTA

Accuracy 0.4678 0.4386 0.4678 0.6140
Specificity 0.7127 0.6915 0.8085 0.9149
Sensitivity 0.2987 0.2987 0.1818 0.2727
J-Statistics 0.0115 -0.0098 -0.0097 0.1876

Time(s) 149.5502 267.8659 47996.5866 20.771

Table 1: Performance comparison between the un-
supervised baselines and the FTA.

As shown, the FTA outperforms all three baselines by
nearly 15% to 18% on the prediction accuracy, a signifi-
cant improvement to these well known time-series alignment
methods. This demonstrates the FTA can better encode the
temporal patterns which are important for predicting ADHD
subjects than the unsupervised baselines. All four methods
have a high specificity but a relatively low sensitivity. The
FTA can reach the best specificity of 0.9149 but with a sen-
sitivity of 0.2727. This is reasonable since there are much
more TDC subjects than ADHD children diagnosed in the

http://fcon_1000.projects.nitrc.org/indi/adhd200/


Figure 4: Prediction Accuracy versus Execution
Time. Comparison between FTA and unsupervised
baselines

training set (491 TDC and 285 ADHD children) thus the
ability of a classifier to detect ADHD children is dampened
– the prior distribution of TDC is biased by a large number
of TDC samples in a general population. Such an unbalance
between TDC and ADHD subjects can be relieved by impos-
ing a larger penalty on missing ADHD subjects. However,
we do not perform such a re-balance for the sake of a fair
comparison with the other baselines.

Next we perform efficiency evaluation for all four meth-
ods. Since all three baselines adopt Dynamic Programming
(DP) to perform similarity search, it can be expected that
they will have a much slower speed than the proposed FTA
hashing which performs similarity search by the Hamming
distance. Figure 4 shows the Prediction Accuracy versus
the Execution Time for all the methods. Compared with
the baselines, FTA achieves more than 30% higher predic-
tion accuracy on the entire test set and at least 7 times faster
than DP based baselines. That suggests the proposed FTA
hashing can be used for fast detection of ADHD subjects.

5.4 Comparison with Supervised Baselines
Now we compare the proposed method with two super-

vised baselines: JHU[12] and AGDM[10]. The approach
proposed by JHU is a weighted combination of several algo-
rithms including CUR decompositions, random forest, gra-
dient boosting and support vector machine et al. It adopts
both fMRI data and the accompanying phenotypic informa-
tion like IQ to predict the ADHD subjects. On the contrary,
another baseline AGDM only requires fMRI data to make
the prediction. According to [10], features called AGDM
were extracted from fMRI data to encode the brain network
structure first. Then they were used to train a SVM clas-
sifier which made the final prediction. Since two baseline
methods have different experiment settings, we follow their
individual settings to make a fair comparison.

FTA vs JHU
Similar to Section 5.3, we train and test the FTA on all the
training subsets across the eight sites. More specifically, we
randomly sample 3, 000 pairs from all the 8 training sub-

Figure 5: Percentage of TDC/ADHD Subjects in
each training subset.

sets and use them to find the optimal projections. We also
report the evaluation metrics following the definitions from
the ADHD-200 Global Competition [23]. The comparison
results between the JHU and the FTA are summarized in
Table 2.

Metric JHU FTA

Prediction Accuracy 0.6102 0.6140
Specificity 0.94 0.9149
Sensitivity 0.21 0.2727
J-Statistics 0.15 0.1876

Table 2: Performance evaluation of JHU and FTA

From the table, we can see the proposed FTA outper-
forms the JHU on three metrics – prediction accuracy, sen-
sitivity and J-Statistics. This is an impressive result, con-
sidering FTA only uses fMRI time courses to achieve such
performance, whereas the JHU method involves both fMRI
time courses and phenotypic information. Especially, com-
pared with the JHU result, FTA improves the sensitivity
by 29.85% while still keeping a competitive specificity (over
0.9). Such results demonstrate that encoding the temporal
orders of the different neural activity patterns is definitely a
helpful clue to identify the ADHD subjects.

We further justify this claim by showing some real exam-
ples of temporal orders of learned patterns. Figure 6 shows
the sequences of two patterns projected from the TCs corre-
sponding to the TDC and ADHD subjects. Figure 6a comes
from a TDC subject while Figure 6b is obtained from a
ADHD subject. It is clear that these two patterns exhibit
different temporal orders between the TDC and ADHD sub-
jects. Since the FTA can encode the temporal order of pat-
terns, the resultant hash codes can characterize the neural
activity difference between different types of TCs.

FTA vs AGDM
Unlike the JHU method, the AGDM conducted their ex-
periments on the individual subsets. There are totally eight
subsets collected by different imaging sites and AGDM chose
four of them to evaluate their approach. The chosen subsets
are collected by 1) Kennedy Krieger Institute (KKI), 2) Neu-
roIMAGE, 3) Oregon Health & Science University (OHSU)
and 4) Peking University (Peking) respectively. To evaluate
the proposed method, we follow the same experiment setting
as the AGDM, and train and test on each subset separately.



Figure 6: Comparison of the temporal order of two patterns between the TDC and ADHD subjects. It
illustrates how the order of these two patterns matters in detecting ADHD.

Sites
Prediction Accuracy Specificity Sensitivity J-Statistic
AGDM FTA AGDM FTA AGDM FTA AGDM FTA

KKI 0.5455 0.8182 0.625 1 0.3333 0.3333 -0.0417 0.3333
NeuroImage 0.48 0.8 0.6429 0.8571 0.2727 0.7273 -0.0844 0.5844

OHSU 0.8235 0.8676 0.8929 0.9643 0.5 0.6667 0.3929 0.6310
Peking 0.5882 0.6176 0.9259 1 0.2083 0.25 0.1342 0.25

Average 0.6281 0.7759 0.8312 0.9554 0.2727 0.4943 0.1003 0.4497

Table 3: Performance evaluation on individual sets

Table 3 shows the comparison results between the FTA
and the AGDM on individual sets. Apparently, the FTA
significantly outperforms the AGDM on every evaluation
metrics. Specifically, the average prediction accuracy and
the average sensitivity of FTA outperform the AGDM by
around 15% and 20% respectively. This means more than
75% of subjects can be correctly classified, and nearly half
of ADHD patients can be successfully detected by the FTA.
Moreover, the specificities of FTA on all four subsets are
obviously boosted compared with the AGDM. Especially on
KKI and Peking, the specificity achieves 1 – all TDC sub-
jects are correctly identified.

Similar results can be found about the sensitivity. On the
NeuroIMAGE and the OHSU subsets, the sensitivities have
reached over 0.7 and 0.6, much closer to the corresponding
specificity. Consider our discussion in Section 5.3 – the low
sensitivity is caused by high ratio of TDC in the training set.
We calculated the percentage of TDC and ADHD subjects
on each subset, which are illustrated in Figure 5. It shows
that the ratio of TDC/ADHD subjects on NeuroIMAGE
and OHSU is close to 1, while it is much higher on KKI and
Peking. This implies that the low sensitivity is caused by a
high ratio of TDC/ADHD.

5.5 Parameter Sensitivity Analysis
Finally, we evaluate the FTA’s performance by varying its

hyper-parameters. In particular, we study the impact of the
code length L and FTA base K on the performance. Besides
the AAL, we also conduct experiments with TCs extracted

K Value

2 3 4 5 6 7

T
e
s
t 
A

c
c
u
ra

c
y

0.3

0.4

0.5

0.6

0.7

0.8
K Parameter Test

AAL

CC200

HO

TT

Figure 7: Test accuracy across different ROIs, using
different K values

from 3 other pre-built brain atlas: Talairach and Tournoux
(TT)[21], Harvard-Oxford (HO)[15] and CC200[8].

Prediction Accuracy vs K
By varying the FTA base K, it can be shown that it affects
the test accuracy of the FTA model. For a fixed code length
of 200, a variety of K values were used: from 2 through
7. The results show differences in impact of K for different
ROI atlases. For instance, with the CC200, an increased K
tends to improve the accuracy, whereas an increased K in
the AAL results in a subtle decrease in the test accuracy
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Figure 8: Test accuracy across different ROIs, using
different L values

followed by an increase after K = 6. Overall, all four ROI
atlases, begin to converge to a median of performance when
K approaches 7. Throughout the tests, the results indicate
only small dependencies contingent on the values of K.

Considering K is the number of patterns involved in gen-
erating a hash code, assessing its role offers a way to tune the
amount of discriminant information available at any given
comparison. From Figure 7, it seems that for slight increases
in K (e.g., from K = 4 to K = 6 for CC200) the amount
of information increases, offering an increased test accuracy.
However, there appears to be a point at which further in-
creasing the value of K no longer improves the test accuracy
(beyond K = 6). Ultimately, this leads to a decline in per-
formance due to the redundancies in the comparison of a too
large number of patterns.

Prediction Accuracy vs L
Now let us assess the code length parameter L. Fixed at
K = 2, a variety of code lengths were tested, ranging from
L = 10 to L = 1000. In Figure 8, it can be seen that L
acts differently across different ROIs, especially between the
range of 10 to 200 code length. Incidentally, it is shown
that this range experiences the most abrupt shifts in perfor-
mance, whilst the range 200-1000 shows either constant or
steady trends. In the case of AAL and HO, they are par-
ticularly sensitive to this parameter. Within the L = 10 to
L = 200 range, the performance reaches its peak and then
drops subsequently. Extending to the set of other ROIs, Fig-
ure 8 shows that this trend (to a lesser degree) is exhibited
on CC200 and TT as well.

Resulting from this experiment, it can be shown that vary-
ing code lengths has impact on performance, with tuning
required particularly in the range of compact codes from
L = 10 and L = 200. Yet similar to K, simply increasing
the value indefinitely does not result in a better test ac-
curacy because of higher redundancies that might exist in
longer codes.

6. CONCLUSION
In this paper, we propose a novel FTA algorithm to hash

time series of varied length into fixed-size codes. We use the
resultant hash codes to efficiently detect the ADHD subjects
by fast retrieving the similar subjects. To maximize its per-

formance, we design an effective algorithm to learn the op-
timal projections W. The results of extensive experimental
evaluations show the proposed FTA outperforms both unsu-
pervised and supervised methods on the ADHD-200 dataset
for identifying ADHD subjects, beating the winning algo-
rithm in the ADHD-200 Global Competition.
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APPENDIX
A. EQUATIONS FOR LEARNING OPTIMAL

PROJECTIONS
This section contains the equations required to derive the

gradient of F w.r.t. W in learning the optimal projections.
Here, we use Lij to denote the logarithmic training loss

for a pair of TCs X(i) and X(j), i.e.,

Lij = sij log
(

1− hij
)

+ (1− sij) log
(
hij
)

(11)

The following equations can be calculated by applying the
chain rule of the derivatives on F of Eq. (10).
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