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Abstract—Social media networks contain both content and context-specific information. Most existing methods work with either of the

two for the purpose of multimedia mining and retrieval. In reality, both content and context information are rich sources of information

for mining, and the full power of mining and processing algorithms can be realized only with the use of a combination of the two. This

paper proposes a new algorithm which mines both context and content links in social media networks to discover the underlying latent

semantic space. This mapping of the multimedia objects into latent feature vectors enables the use of any off-the-shelf multimedia

retrieval algorithms. Compared to the state-of-the-art latent methods in multimedia analysis, this algorithm effectively solves the

problem of sparse context links by mining the geometric structure underlying the content links between multimedia objects. Specifically

for multimedia annotation, we show that an effective algorithm can be developed to directly construct annotation models by

simultaneously leveraging both context and content information based on latent structure between correlated semantic concepts. We

conduct experiments on the Flickr data set, which contains user tags linked with images. We illustrate the advantages of our approach

over the state-of-the-art multimedia retrieval techniques.

Index Terms—Context and content links, latent semantic space, low-rank method, social Media, multimedia information networks.
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1 INTRODUCTION

THE development and popularity of Web 2.0 applications
has made it much easier for millions of users to create

and share their personal multimedia objects (MOs) than
ever before. Many image and video sharing web sites have
become extremely popular, as is evidenced by their
burgeoning membership. Many such sites are built upon
information and social network infrastructures such as
Flickr, Youtube, and Facebook that connect millions of users
with one another. Users are able to share their MOs with
each other, and also provide the ability to tag each other’s
objects. Such sites represent a kind of rich multimedia
information networks (MIN) [4] for social media [30], [21]
in which the objects are linked to one another in the site
with content links. By “content links,” we refer to the visual
and/or acoustic similarities between objects in a content
feature space (see Fig. 1a). At the same time, the sharing
process of such sites naturally creates Context Objects (COs)
because of the rich information provided by the different
users directly or indirectly. Some examples of such COs are

tags (e.g., user tag and geo-tags), related attributes (colors,
textures, and even categories from weakly labeled data) [5],
and users who share MOs as well as their queries connected
to MOs by click-through records (see Fig. 1b). This helps to
create an even richer MIN with context links which connect
the MOs with their related COs. For example, the MOs
clicked by users in the same query session probably contain
the same semantic meaning. It is also the same for the MOs
which share the same user tags1 in MINs. It is often very
useful for multimedia retrieval by mining the semantics in
these context links. In this paper, we define a MIN as an
information network with two kinds of semantic objects—
MOs and COs. See Fig. 2 for an example. The MOs are
connected in a relational graph structure, with both content
and context relationships. While content relationships are
directly useful for retrieval, the context relationships also
contain rich semantic information which should be lever-
aged for effective retrieval.

In this paper, we show that a compact latent space can be
discovered to summarize the semantic structure in MINs,
which can be seamlessly applied in the state-of-the-art
multimedia information retrieval systems (see Fig. 2 for an
example). Specifically, this algorithm maps each MO into a
latent feature vector that encodes the information in both
context and content information. Based on these latent
feature vectors, MOs can be effectively classified, indexed,
and retrieved in a vector space by many mature off-the-
shelf vector-based multimedia retrieval methods, like
clustering, Re-Ranking [26], and Support Vector Machine
(SVM) [20] for multimedia retrieval. Thus, our approach is a
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1. In this paper, we mainly concentrate on the context links associated
with user tags. While the results in this paper are general enough to be
applied to any kind of context links, we mainly focus on tag links because of
the richness of their semantic information as compared to other kinds of
context links.
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“general purpose technique” which can be leveraged to
improve the effectiveness of a wide variety of techniques.

The general approach of learning latent semantic space

has been extensively studied in the field of information

retrieval. Popular techniques include Latent Semantic

Indexing (LSI) [15], Probabilistic Latent Semantic Indexing

(PLSI) [14], and Latent Dirichlet Allocation (LDA) [6]. These

algorithms have also been applied to multimedia domain

for problems such as indexing and retrieval [7], [17], [16],

[29]. For example, [7], [17] learn latent feature vectors by LSI

for natural scene images, and the learned features can

be used effectively with general purpose SVM classifiers.

Some preliminary results have shown the effectiveness of

these algorithms; however, all these methods suffer from

the problem with sparse context links, which we solve with
the use of content links.

1. Sparse context links. These are the virtual links
which are created as a result of user feedback (e.g.,
tags), and may be represented as the linkages
between the MOs and the contextual objects such
as tags. In the real-world contextual links, the
number of user tags attached to an MO is usually
quite small. In some extreme cases, only a few or
even no tag may be attached to an object, which
often leads to sparse contextual links. In such cases,
it is hard to derive meaningful latent features for
MOs because the determination of the correlation
structure in the latent space requires a sufficient
number of such contextual objects to occur together.

A reasonable solution to this problem is to exploit
the content links between MOs. In this paper, we
will show how the content links can effectively
complement the sparse contextual links by incorpor-
ating acoustical and/or visual information to dis-
cover the underlying latent semantic space.

2. Omitting content information in LSI modeling of
context links. In this paper, content links represent
the content similarities between MOs, i.e., those
visually and/or acoustically similar objects are
assumed to have strong content links between them.
Content links contain important knowledge comple-
mentary to that embedded in context links. How-
ever, to the best of our knowledge, the existing latent
space methods, LSI, PLSI, and LDA, cannot seam-
lessly incorporate the content and context links in a
unified framework. Some attempts have been made
to jointly model content and context information to
learn the latent space [17], [29]. They quantify the
MOs into visual words, which are treated in a way
similar to some COs by linking them to MOs.
However, such approaches greatly increase the
number of parameters in the latent space model,
and make it more prone to quantization-induced
noise and overfitting due to the sparse context links.

In contrast, we will show that content and context
links can be seamlessly modeled to learn the under-
lying latent space. The content information does not
have to be quantified into some discrete elements
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Fig. 1. Context and content links in MINs.

Fig. 2. Learning latent semantic space from context as well as content links simultaneously.



such as visual words described in [17]. Instead, the
content link structure will be directly leveraged to
discover latent features together with context links.

Therefore, we propose an elegant mapping of MINs to the
latent space which can support an emerging paradigm of
multimedia retrieval which unifies the information in
context and content links. In other words, the goal of this
approach is to annotate the images with some manually
defined concepts, using visual and contextual features for
learning a latent space. Specifically, by feeding the latent
vectors into existing classification models, it can be applied
to multimedia annotation, which is one of the most
important problems in multimedia retrieval. Furthermore,
we show a more sophisticated algorithm which can directly
incorporate the discriminant information in training exam-
ple for multimedia annotation without using mapping as a
prestep. It jointly explores the context and content informa-
tion based on a latent structure in the semantic concept space.
Moreover, even given a new MO with no context links, this
extended algorithm can still annotate it. This solves the out-
of-sample problem and greatly extends the applicability of
the algorithm in multimedia retrieval applications.

1.1 Related Work

Analysis and inference with multimodal data [2], [13], [19]
is one of most important research topics in computer vision
and patter recognition areas. Existing methods usually
assume that in each data piece, there are a number of
complementary cues associated with each other. For
example, in a video clip, we observe a sequence of video
frames as its visual cue, as well as the incident audio track.
In the multimodal problem, the data in different modalities
are always associated with each other. In other words, one
data modality is always associated with its counterparts in
another modalities. Many representative works concentrate
on such a problem. SimpleMKL [19] addresses the multi-
modal problem by learning a linear combination of multiple
kernels with a weighted 2-norm formulation. Bekkerman
and Jeon [2] explore the multimodal nature of multimedia
collections within the unsupervised learning framework.
Guillaumin et al. [13] propose using semi-supervised
learning to explore both labeled and unlabeled images in
photo sharing websites while exploring the associated
keywords in the text modality. Competitive results show
these multimodal algorithms can gain much better perfor-
mance as compared with single modal algorithms.

However, in social media applications, COs are not
always associated with COs. For example, the new images
in a test set usually do not have any accompanying user
tags. In this case, multimodal methods cannot be applied
due to the missing COs. We will discover the missing links
between context and content objects, which is one of main
problems we will address in this paper. In social media,
structured MINs are the most natural data structure to
represent the interaction between content and COs. This
paper proposes a principled method to fuse the content and
COs in such a social media network structure. We especially
attempt to capture the links in MIN by embedding the
content objects into a latent space. Similar linear embedding
techniques like metric learning [28] have been proposed to
reveal the underlying space structure. However, it is

nontrivial to extend these embedding techniques to MIN.
Perhaps the most relevant work is proposed by Blei et al.
[6], who use a latent method for associating the annotated
tags with the local regions in images. Its limitation is that
this method can only assign existing user tags to images,
but cannot handle the concepts beyond these tags.

The remainder of this paper is organized as follows:
Section 2 reviews a set of state-of-the-art multimedia
retrieval paradigms and motivates unifying both context
and content links in social media. In Section 3, we briefly
review the basic ideas of latent methods which are closely
related to the proposed method. The proposed latent
method is then detailed in Section 4. In Section 5, we
develop an advanced algorithm for multimedia annotation
by exploring the context and content information with the
latent structure between the correlated semantic concepts
for annotation. Experimental results are presented in
Section 6 on a real-world multimedia data set crawled from
Flickr. Finally, conclusions are made in Section 7.

2 MULTIMEDIA RETRIEVAL PARADIGMS

In the following, we briefly review some existing multi-
media retrieval paradigms and discuss the advantages of
unifying analyses of both context and content links in social
media. Based on whether context and/or content links are
used, multimedia retrieval has evolved from the Content-
based Multimedia Retrieval (CMR) [22] in the first para-
digm, to the context-based multimedia retrieval (CxMR) in
the second paradigm, and to the Context-and-Content-
based Multimedia Retrieval (C2MR) as the latest paradigm.

2.1 Content-Based Multimedia Retrieval

The CMR approach attempts to model high-level concepts
from low-level concepts extracted from the MOs. In a typical
multimedia retrieval system like QBIC [12] and Virage [1], the
query is formulated by some example MOs and/or text-
based keywords. Then, the relevant MOs are retrieved based
on their content features. The advantage of CMR is that it is an
automatic retrieval approach. Once the concepts are mod-
eled, no human labels are required to maintain it. However,
due to the technical limit of artificial intelligence and
multimedia analysis, its accuracy is often too low to output
satisfactory retrieval results due to the semantic gap between
low-level content features and high-level semantics.

2.2 Context-Based Multimedia Retrieval

With the development of Web 2.0 infrastructures, rich
context links are often connected to MOs on the media-rich
web sites such as Flickr, Youtube, and Facebook. In contrast
to pure content information, these links provide extra
semantic information to retrieve and index MOs in the
Web environment. For a simple example, the images of
“sea” and “sky” have similar color features which are
difficult to distinguish by similarity in content feature space.
However, by leveraging the user tags in their context links
and mapping them into a new latent space by LSI, PLSI, and
LDA, they can be distinguished with the semantics in
their COs. Context-based Multimedia Retrieval (CxMR)
approaches have been widely used in many practical
multimedia search engines such as Google Images, which
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utilize the context links such as surrounding text and user
tags. Although the information in the context links is useful
in many cases, they are often sparse and noisy. In some
cases, it can lead to questionable performance, when
the context contains much more irrelevant information to
the mining process. This is often evident from the Google
Image results when the images do not match the corre-
sponding search at all.

2.3 Context-and-Content Multimedia Retrieval

Unifying the information in both context and content links is
an appealing approach to solving the limits inherent in the
two paradigms discussed above. Context links provide high-
level semantic information which can be effective for
resolving the ambiguity in the content feature space due to
the semantic gap inherent in a pure content-based approach.
Similarly, content links between MOs can serve as regular-
ization, which can avoid the overfitting problem due to the
sparse and noisy context links. The combination of two
techniques provides the solution to effective multimedia
retrieval in the rich Web 2.0 environment, which is so-called
Multimedia Retrieval 2.0. This approach formulates multi-
media retrieval by unifying the content and context-based
approaches. As compared with the above existing multi-
media retrieval systems, the advantages of our algorithm
include:

1. We propose a general-purpose scheme which is
broadly applicable. Many advanced vector-based
retrieval systems can be seamlessly used with the
proposed approach.

2. Context and content links are explored in a unifying
framework. Hence, the learned latent space ought to
be more optimal than the other methods which
separately mine these two kinds of links in MINs.

3. Specifically, for the multimedia annotation problem, a
more sophisticated algorithm is developed by lever-
aging the assumption that the semantic concepts for
annotation are correlated and thus a latent structure
exists in such a semantic concept space. Also, the
context-and-content links are simultaneously ex-
plored to optimize the annotation performance.

3 LATENT SEMANTIC INDEXING

In this section, we briefly review LSI, which is closely related
to the algorithms proposed in the later section of this paper. In
conventional methods for LSI, we map MOs to latent feature
vectors. Suppose we have n MOs fd1; d2; . . . ; dng and m COs
fc1; c2; . . . ; cmg such as user tags. The context links between
these nMOs and themCOs are denoted by a n�mmatrixA.
The elementsAi;j 2 IRn�m of this matrix represent the weights
of context links, e.g.,Ai;j ¼ 1 if the jth CO is assigned to the ith
MO, orAi;j ¼ 0 otherwise. The goal of LSI is to construct a set
of feature vectors fX1; X2; . . . ; Xng in a latent semantic
space IRk to represent these MOs. LSI performs a Singular
Vector Decomposition (SVD) on the matrix A as follows:

A ¼ U�V T : ð1Þ

Here, U and V are orthogonal matrices such that UTU ¼
V TV ¼ I, and the diagonal matrix � has the singular values

as its diagonal elements. By retaining the largest k singular
values in � and approximating others to be zero, LSI creates
an approximated diagonal matrix e� with fewer singular
values. This diagonal matrix is used to approximate A as
Â ¼ U e�V T . Then the matrix X ¼ Ue� 2 IRn�k yields a new
feature representation, each row of which is a k-dimensional
feature vector of one MO, i.e., X ¼ ½X1 X2 � � � Xn�T . The
computational complexity of SVD on the matrix A grows
quadratically with the number of COs. If the content features
extracted from MOs are quantified into description words
(e.g., visual words) as COs, the computational cost will
increase rapidly. On the other hand, as stated in Section 1, the
link matrix A is usually quite sparse, with few context links.
This may result in overfitting of the latent feature vectors
since the small number of context links may not reflect the
underlying correlation structure in a robust way.

PLSI is another algorithm which models the latent space
by context links. Each MO is associated with a set of latent
topic variables fh1; h2; . . . ; hkgwith conditional probabilities
P ðhjjMOÞ, 1 � j � k. Similarly, for the latent topic hl, the
conditional probability of the context object COj is denoted
by P ðCOjjhlÞ. The conditional probability of COj given
MOi can be expressed as a product of these values:

P COjjMOi

� �
¼
Xk
l¼1

P COjjhl
� �

P hljMOið Þ: ð2Þ

The probabilities P ðhljMOiÞ; P ðCOjjhlÞ, 1 � l � k, can be
estimated by using Maximum Likelihood (ML) and
standard EM algorithms. We can use these to construct
the latent feature vector XðMOÞ of the multimedia object
MO as follows:

X MOð Þ ¼ P h1jMOð Þ; P h2jMOð Þ; . . . ; P hkjMOð Þ½ �T : ð3Þ

PLSI has similar drawbacks as LSI because it does not
consider the content links. Furthermore, the number of
parameters in PLSI grows linearly with the number n of
MOs. This suggests that the model is prone to overfitting [6]
due to the sparse context links. Some alternative PLSI
algorithms have been proposed for using context informa-
tion during latent space discovery. They quantize the
content features into COs (e.g., visual words) and use some
extra conditional probabilities to model their relations with
latent topics [29]. Although content information is used in
such a model, it has many more parameters which need to
be estimated. This results in overfitting.

LDA is another technique from this family of latent space
methods. It assumes that the probability distributions of
MOs over latent topics are generated from the same
Dirichlet distribution [6]. This simplified assumption is
key to avoiding the (large parameter) overfitting issue of
PLSI. However, the simplifying assumption has the pitfall
that the assumed Dirichlet distribution over MOs may not
reflect their true distribution in the multimedia corpus.

While most of these algorithms focus on learning the
latent space solely with context links, some efforts have
been made to incorporate content information [31]. In order
to incorporate content information into context analysis, it
uses two separate matrices to factorize the content and
context links (in addition to the latent matrix for MOs).
However, it does not consider the geometric structure of the
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distribution of MOs in the corpus. From a practical
perspective, the extra latent matrix for either content or
context links is unnecessary in multimedia retrieval.
Instead, in this paper, we will learn a shared latent space
from content and context links simultaneously so that it can
mine the link structure in an integrated manner without
introducing any additional model parameters. Moreover,
the proposed formulation has a better optimization topol-
ogy, i.e., it is a global convex optimization problem so that
better numerical stability can be achieved.

We propose to model the geometric structure of MOs by
their content links to capture their distribution in the
underlying latent space. In other words, our intuitive
assumption is that the MOs with stronger content links ought
to be closer to each other in the latent space. By this assumption,
the content links can be encoded into latent space together
with context links.

4 LATENT SPACE MODELING IN SOCIAL MEDIA

In this section, we propose methods for combining the
content links with context links in order to discover the
latent semantic space for MOs.

First, we show that the LSI problem is closely related to
low-rank matrix approximation [8], [9]. Due to the noises
in the context links, a noise term " exist on the matrix A
such that

A ¼ H þ ": ð4Þ

Here, the matrix H denotes the noise-free context links,
after the noise " has been removed.

To derive H, some extra prior ought to be assumed on H.
Inspired by LSI with a low-rank approximation of A, we
impose a low-rank prior to recover H by minimizing the
noisy term simultaneously as

min "k k2
F þ �rank Hð Þ

s:t:; A ¼ H þ "; ð5Þ

where �k kF is the Frobenius norm (i.e., the squared
summation of all elements in a matrix), � is the balancing
parameter, and rankð�Þ is the rank function.

There is an intuitive interpretation for the low-rank prior.
Let Hi, 1 � i � n, denote the row vectors of H, which is the
associated noise-free tag vector for the ith MO. Each tag
vector represents the occurrence of the corresponding tag in
the multimedia corpus. As illustrated in Fig. 3, the tag
vectors of synonyms should be the same (or within a
positive multiplier of one another), such as the tag vector
HPerson and HHuman for the synonym terms “person” and
“human.” Moreover, many tags do not independently occur
in the corpus since they are semantically correlated. For
example, the tag “animal” often correlates with its sub-
classes such as “cat” and “tiger.” This indicates, from the
viewpoint of linear algebra, that the tag vector of “animal”
could be located in a latent subspace spanned by those of its
subclasses. Since the rank of matrix H is the maximum
number of independent row vectors, it follows from the
above dependency among tags that H ought to have a low
rank structure. As revealed by the latent methods in the last
section, user tags can be generated by mixing few latent
topics. The topic vectors that represent occurrences of the

associated topics in the multimedia corpus span a latent
semantic space which contains most of the tag vectors.
Therefore, the rank of H should be no more than the
maximum number of independent topic vectors in the
latent space. Hence, we can impose a low-rank prior to
estimate the noise-free H from the observed noisy A.

It is NP-hard to directly solve the optimization problem
of determining the lowest rank approximation [8]. Recently,
nuclear norm was proposed as a convex surrogate for
matrix rank [27], [8]. Its convexity is an advantage in being
able to perform an effective optimization process. The norm
is computed as the sum of all the singular values of the
matrix. Let kAk� denote the nuclear norm of A, then Ak k� ¼P

i �iðAÞ where �iðAÞ are singular values of A. Then (5) can
be rewritten as

min
H

A�Hk k2
F þ � Hk k�: ð6Þ

The relationship between the above formulation and LSI
can be presented more formally in the following result [8].

Theorem 1. minH A�Hk k2
F þ � Hk k� has a unique analytical

solution as H� ¼ Udiagðð�� �
2ÞþÞV T , where U , V , and

diagð�Þ form SVD for A as A ¼ Udiagð�ÞV T . Here diagð�Þ
is a diagonal matrix with the singular values in vector � as its
diagonal elements. ð�� �

2Þþ is a component-wise operation
that ðxÞþ ¼ maxð0; xÞ.

The difference is that LSI directly selects the largest k
singular values of A, but (6) subtracts �

2 from each singular
value and thresholds them by 0.

Suppose the resultingH is of rank k, then the SVD ofH has
form as H ¼ U�kV

T , where �k is a k� k diagonal matrix.
Similarly as LSI, the row vectors of X ¼ U�k can be used as
the latent vector representations of MOs in latent space. It is
also worth noting that minimizing the rank of H gives a
smaller k so that the obtained latent vector space can have
lower dimensionality, and then the storage and computation
in this space could be more efficient in practice.

However, (6) does not encode the content links, and the
sparse context links may not result in a reliable latent space
to represent MOs. Suppose we are given a matrix Q of
content links, where Qi;j can represent the similarity
measurement between the ith MO and the jth MO. For
example, we can extract some low-level feature vectors
ff 1; f2; . . . ; fng from the visual and/or acoustic content of
MOs; then Qi;j could be represented as follows:
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Qi;j ¼ exp �
f i � f j
�� ��2

�2

( )
: ð7Þ

The relationship above uses Gaussian kernel with radius �.
By linking all the MOs withQ, they can be embedded into

a low-dimensional manifold structure [11], [3]. More
specifically, we assume that the MOs with stronger links ought
to be closer to each other in the latent semantic space. This
assumption is analogous to the Laplace-Beltrami operator on
manifolds [11], and makes a smooth regularization on the
underlying geometric structure between MOs in the latent
space. It can avoid the overfitting problem induced by sparse
context links, and it can also incorporate the content links
into modeling the latent space geometry. Based on this
assumption, we introduce the quantity � to measure the
smoothness of MOs in the underlying latent space:

� Xð Þ ¼ 1

2

Xn
i;j¼1

Qi;jkXi �Xjk2
2

¼ 1

2

Xn
i;j¼1

Qi;j Xi �Xj

� �
Xi �Xj

� �T
:

ð8Þ

Here, k � k2 is l2 norm, andXi andXj are the ith and jth row of
X. It is easy to see that by minimizing the above regulariza-
tion term, a pair of MOs with larger Qi;j will have closer
feature vectors Xi and Xj in the latent space. With some
matrix operations, �ðXÞ can be further simplified as follows:

� Xð Þ ¼ 1

2

Xn
i;j¼1

Qi;j

�
XiX

T
i �XiX

T
j �XjX

T
i þXjX

T
j

�
¼
Xn
i;j¼1

Qi;jXiX
T
i �

Xn
i;j¼1

Qi;jXiX
T
j

¼ trace XXTD
� �

� trace XXTQ
� �

¼ trace XXT D�Qð Þ
� �

¼ trace XT D�Qð ÞX
� �

¼ trace XTLX
� �

:

ð9Þ

Here, D is a diagonal matrix with its elements as the sum of
each row of Q, and L ¼ D�Q is the positive semidefinite
Laplacian matrix. By using the factorization H ¼ XV T and
V TV ¼ I, we can simplify as follows:

trace HTLH
� �

¼ trace VXTLXV T
� �

¼ trace XTLXV TV
� �

¼ trace XTLX
� �

:
ð10Þ

Now we can formulate the new model to discover the
latent semantic space by adding (10) into (6), which
minimizes the following problem:

min
H
F Hð Þ ¼ A�Hk k2

F þ �trace HTLH
� �

þ � Hk k�: ð11Þ

Here � is a tradeoff parameter. We note that the nuclear
norm is convex, and L is a positive semidefinite matrix.
Therefore, the above optimization problem has the desir-
able property that it is convex with a global optimum. Note
that when there are images without any associated COs
(e.g., testing images with no user tags), the term of the least-
square error in the above equation is computed on the
images with COs. It is the matrix completion problem in [8].
In this case, the second term plays the role of sharing and
connecting the context knowledge between tagged and
untagged images by their visual similarities.

It is worth noting that no links are established between
COs in the above formulation. The reason we do not consider
these links is that in order to link the COs (e.g., user tags),
external knowledge is required to measure the similarity
between them, such as WordNet and Google distance for
linking textual user tags. Although these links can provide
extra information, misleading knowledge may be introduced
from the external resources, which do not comply with the
visual evidence. For example, there is domain gap between
text and visual similarities, and two textual tags that are
strongly correlated in text documents may not co-occur in
images. Thus, in the context of multimedia retrieval, we shall
not incorporate context links in the formulation.

In contrast to (6), (11) does not have a closed-form
solution. Fortunately, this problem can be solved by the
Proximal Gradient method [25], which uses a sequence of
quadratic approximations of the objective function (11) in
order to derive the optimal solution. We define KðHÞ ¼
A�Hk k2

F þ �traceðHTLHÞ, and observe that FðHÞ ¼
KðHÞ þ � Hk k2

� is summation of the differentiable function
K and the nuclear norm. This helps in defining the update
step as well. Given H��1 in the last step � � 1, it can be
updated by solving the following optimization problem
which quadratically approximates FðHÞ by Taylor expan-
sion of KðHÞ at H��1 [25]:

H� ¼ arg min
H

K H��1ð Þ þ rK H��1ð Þ; H �H��1h i

þ �
2
H �H��1k k2

F þ � Hk k�

¼ arg min
H

�

2
H �G�k k2

F þ � Hk k�

þK H��1ð Þ � 1

2�
rK H��1ð Þk k2

F :

ð12Þ

Note that the last two terms in the rightmost side of the
above equation do not depend on H� so they can be ignored
when minimizing w.r.t. H� . The values of G� and � in the
above expression are defined as follows:

G� ¼ H��1 �
1

�
rK H��1ð Þ

¼ H��1 �
2

�
H��1 �Aþ �LTH��1

� �
;

ð13Þ

� ¼ 2�max I þ �LT
� �

; ð14Þ

where the coefficient � satisfies the Lipschitz condition such
that rRKðRÞ � rTKðT Þk kF � � R� Tk kF for any R, T , and
�maxð�Þ denotes the largest singular value.

In each step, (12) provides an analytical solution to H� , as
illustrated in Theorem 1. Algorithm 1 summarizes the
optimization procedure.

Algorithm 1. Proximal Gradient for minimizing (11)

input A for the context links, Q for the content links,

balance parameters � and �.

1 Initialize H0  0 and �  1.
2 Set � 2�maxðI þ �LT Þ.

repeat

2 Compute G� in (13).

3 Set H�  Udiagð�� �
�ÞþV T which optimizes (12) by

Theorem 1. Here Udiagð�ÞV T gives the SVD of G� .
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4 �  � þ 1.
until Convergence or maximum iteration number

achieves.

5 MULTIMEDIA ANNOTATION FROM CONTEXT AND

CONTENT LINKS

Multimedia annotation plays the critical role in multimedia
retrieval, and it aims at annotating semantic concepts to
MOs. As mentioned before, once the latent feature vectors
are learned, they can be fed into some existing vector-based
classifiers to detect semantic concepts for annotation.
Instead of learning a latent space for MOs as a prestep,
we develop an alternative algorithm in this section that
directly learns the annotation model from training exam-
ples. Our method explores both the context and content
information based on the latent structure between the
correlated semantic concepts for annotation. Since it is a
supervised algorithm, we will refer to it as Supervised
Context-and-Content Multimedia Retrieval (S-C2MR) in
this paper (in contrast to the U-C2MR algorithm in the last
section). It is worth noting that even given a new MO
without any associated context links, S-C2MR can still
annotate it. In other words, S-C2MR can readily handle out-
of-sample problems in the case of new MOs. This greatly
extends the applicability of content and context-based
multimedia annotation in many practical applications.

For a set of l semantic concepts, the goal of multimedia
annotation is to predict the labels of these concepts on the
MOs. A set of n MOs is used as the training data set to learn
the annotation model on which the labels of l concepts are
given. Let yi;u denote the training label of the uth concept for
the ith MO, where yi;u ¼ þ1 denotes the positive label and
yi;u ¼ �1 denotes the negative label. Meanwhile, a set of
d-dimensional raw feature vectors ff1; f2; . . . ; fng (e.g., the
visual features for images and audio-visual features for
videos) are extracted from the training set. To predict the
labels, l linear classifiers are to be learned, where Wu 2 IRd,
u ¼ 1; 2; . . . ; l, are the coefficient vectors for these linear
classifiers. Then, ~yi;u ¼WT

u f i is the prediction score for the
uth concept on the ith MOs. Stacking Wu into a d� l matrix
W ¼ ½W1;W2; . . . ;Wl�, Yi ¼WT f i is the l-dimensional label
vectors for all the l concepts on the ith MO.

In the learning phase, we learn the model parameter W .
The aim is to ensure that the prediction scores given by W
should match with the ground truth labels on the training
set as much as possible. Let mi;u ¼ yi;u~yi;u ¼ yi;uWT

u f i; then it
should be as large as possible by the maximum margin
principle. We use the logistic loss function h�ðxÞ ¼
1
� logð1þ expð��xÞÞ to measure the margin with � controlling
its shape, and the margin can be maximized by minimizing
the total logistic loss over all the training examples:

L Wð Þ ¼
Xn
i¼1

Xl
u¼1

h� mi;u

� �
¼
Xn
i¼1

Xl
u¼1

h�
�
yi;uW

T
u f i
�
: ð15Þ

To incorporate the information from the context links,
when learning W we define an n� n symmetric matrix S,
where each entry Si;j counts the number of COs that the ith
and the jth MOs share. Actually, S can be computed as

S ¼ AAT , and it summarizes the information in the context
links. Similarly to the smoothness assumption made in the
last section on the content links, it is also reasonable to
assume that if two MOs share more COs, they ought to be
semantically similar and the predicted label vectors on them
should be as close as possible. Formally, this smoothness
condition can be obtained by minimizing the following:

� Wð Þ ¼ 1

2

Xn
i;j¼1

Si;jkYi � Yjk2
2

¼ 1

2

Xn
i;j¼1

Si;jkWT f i �WT f jk2
2

¼WTF J � Sð ÞFTW

¼WTFKFTW:

ð16Þ

Here, F ¼ ½f 1; f 2; . . . ; fn� is the d� n data matrix with the
raw feature vectors as its columns, J is a diagonal matrix
whose element is the sum of each corresponding row vector
of S, and K ¼ J � S is the Laplacian matrix for the context
links in contrast to the Laplacian matrix L for the content
links in (9). The third equality in the above equation can be
derived in a similar manner to (9).

Similarly to the tag vectors illustrated in Fig. 3, the target
semantic concepts for annotation will not appear indepen-
dently. The correlation between these concepts implies that a
linear dependency structure exists among the predictions of
these concepts on the MOs. In other words, these concepts
form a low-dimensional latent space in which these concepts
are (linearly) dependent on each other. Since each column
vector ofW corresponds to the prediction coefficients for the
associated concept, the linear dependent structure among
concept predictions implies that W ought to be of low rank.
Combining (15) and (16) together with the above latent
assumption of concept space, we can solveW by minimizing

Xn
i¼1

Xl
u¼1

h� yi;uW
T
u f i

� �
þ �trace WTFKFTW

� �
þ 	 Wk k�;

ð17Þ

where � and 	 are the balancing parameters. Again, this
optimization problem can be solved by the Proximal
Gradient algorithm in a similar way as in the last section.
In detail, let us denote

B Wð Þ ¼
Xn
i¼1

Xl
u¼1

h� yi;uW
T
u f i

� �
þ �trace WTFKFTW

� �
; ð18Þ

then, given the fixed W ð��1Þ at iteration � � 1, (17) can be
quadratically approximated by Taylor expanding BðWÞ at
W ð��1Þ:

P�
�
W;W ��1ð Þ�

¼ B
�
W ��1ð Þ�þ �rB�W ��1ð Þ�;W �W ��1ð Þ�

þ �
2
W �W ��1ð Þ�� ��2

F
þ 	 Wk k�

¼ �
2
W �G �ð Þ�� ��2

F
þ 	 Wk k�

þB
�
W ��1ð Þ�� 1

2�
rB

�
W ��1ð Þ��� ��2

F
;

ð19Þ
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where

G �ð Þ ¼W ��1ð Þ � 1

�
rB

�
W ��1ð Þ�: ð20Þ

Here rBðW ð��1ÞÞ is an l� n matrix which is the gradient of

BðWÞ at W ð��1Þ.
BðWÞ consists of two terms, and we compute their

gradients respectively. Note that the first term of logistic

loss is always differentiable, so we have

@

@Wu

Xn
i¼1

Xl
u¼1

h� yi;uW
T
u f i

� � !

¼
Xn
i¼1

yi;uh
0
� yi;uW

T
u f i

� �
f i;

ð21Þ

where h0�ðzÞ ¼ �1
1þe�z is the derivative of logistic loss function h

at z. Denoting M as an n� l matrix with each entry

Mi;u ¼ yi;uh0�ðyi;uWT
u fiÞ, we have the gradient w.r.t. W :

r
Xn
i¼1

Xl
u¼1

h� yi;uW
T
u fi

� � !
¼ F �M: ð22Þ

Therefore, the gradient of BðWÞ is

rB Wð Þ ¼ F �M þ 2�FKFTW: ð23Þ

Then the new W ð�Þ at iteration � can be solved by

W �ð Þ ¼ arg min
W

P�
�
W;W ��1ð Þ�

¼ arg min
W

�

2
W �G �ð Þ�� ��2

F
þ 	 Wk k�;

ð24Þ

which has analytical solution according to Theorem 1. Note

that as pointed out in [25], the convergence of the proximal

gradient algorithm can be accelerated by making an initial

estimate of � (here, we initialize � by �maxðrBðW ð��1ÞÞÞ in

each iteration) and multiplying it by a constant factor 
 (¼ 0:7

in our case) until BðW ð�ÞÞ þ 	kW ð�Þk� � P�ðW ð�Þ; W ð��1ÞÞ.

Algorithm 2. Supervised Content-and-Context-based Multi-

media Annotation

input Matrix S, balance parameters � and 	.

1 Initialize W ð0Þ  0 and �  1.

repeat

2 Compute the gradient of BðWÞ at W ð��1Þ as (22).

3 Set Gð�Þ ¼W ð��1Þ � 1
�rBðW ð��1ÞÞ.

4 Set W ð�Þ  Udiagð�� 	
�ÞþV T , where Udiagð�ÞV T is the

SVD of Gð�Þ.

8 �  � þ 1.

until Convergence or maximum iteration number

achieves.

In the inference phase, given the raw feature vector f of a

new MO, its labels on l concepts can be predicted by

~yðfÞ ¼ signðWT fÞ.
Finally, we distinguish the proposed supervised content-

and-context multimedia annotation algorithm from other

latent models, including the one proposed in the last

section. Previous latent methods, such as Latent Semantic

Analysis [15], Probabilistic Latent Semantic Analysis [14],

and Latent Dirichlet Allocation [6], are restricted to latent

factor discovery. On the contrary, in this section, the goal of
our approach is to directly model the semantic concepts
from the content and context links while exploring their
latent semantic correlations.

6 EXPERIMENTS

To evaluate the proposed latent space method and its
application in C2MR, we conduct experiments on a public
multimedia data set with a large number of images as MOs
and noisy user tags as COs. It is compared with the other
paradigms of multimedia retrieval algorithms, such as CMR
and CxMR. We evaluate these algorithms in the multimedia
annotation problem, and their performances can be com-
pared in quantity with the available labeling ground truth
in the data set.

6.1 Data Set

Experiments are conducted on a publicly available Flickr
data set.2 It contains 55,615 images which are crawled from
the photo sharing web site Flickr.com. The crawled images
are linked to 1,000 user tags, which are annotated by users
registered in Flickr. The context links between images and
tags are quite sparse. In this data set, most of images only
have fewer than 10 tags, and the average number of tags per
image is 7.3. Fig. 4 illustrates some example of images and
their associated user tags.

Beyond these images and user tags, 81 concepts are
defined in the data set for image annotation. Note that these
81 concepts are different from the user tags, and their
ground truth labels are manually collected by the data set
developer. In contrast, tags are annotated by amateur users
in Flickr, which contains much irrelevant noise information.
The whole data set is partitioned into training set and test
set for this annotation problem. The training set contains
27,807 images and the remaining 27,808 images are in the
test set. In the training set, the training labels are given for
all 81 concepts to learn prediction model. The annotation
performances are then evaluated on test set.

Visual features extracted from the image corpus include

the 64D color histogram and 73D edge direction histogram.

These two kinds of features are concatenated together to

form a 137D vector feature [10]. Features are normalized by

subtracting each dimension of feature by its mean, and then

dividing the resulting feature by three times of the standard

variation of this dimension. After that, the feature vectors of

all samples are normalized so that the square sum of all the

elements in each feature vector is one [10].
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Fig. 4. Examples of Flickr images and associated community-
contributed tags.

2. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.



6.2 Performance Evaluation

The goal of multimedia retrieval is to retrieve a list which is
relevant to the target concept. All the retrieved images are
ranked according to their prediction scores in a descent
order. The relevant images are expected to be ranked higher
in the retrieved list. Therefore, to evaluate the ranking
performance, we adopt Average Precision (AP) to measure
the retrieval performance for each concept. Let R be the
number of true positive images in the test set and Rj be the
number of the relevant images in the top j images in
the rank list. Let Ij ¼ 1 if the jth image is relevant and 0
otherwise. Then AP is defined as

1

R

X
j

Rj

j
Ij: ð25Þ

The AP corresponds to the area under a noninterpolated

recall/precision curve and it favors highly ranked relevant

images. In the experiments, AP is computed for each concept

on the test set to measure the algorithm performance.

6.3 Comparison between Three Paradigms

First, we compare the proposed algorithm with the other
three paradigms of multimedia retrieval algorithms. For the
sake of fair comparison, the SVM model is trained based on
the learned latent space and/or visual features.

1. CMR—Only visual features are used to model the
81 concepts. No user tags are used in this algorithm.
In other words, we train SVM for each concept on
visual features and the resulting SVM is used to
predict the classification scores for retrieval. The
Gaussian kernel is used in SVM for comparison.

2. CxMR—First, a latent space is learned solely from
the context links between user tags and images
based on PLSI. Then the SVM model is trained for
each concept based on the obtained latent feature
vectors to predict the scores. In the next section, we
will compare with an advanced LSI variant—CLMF
(i.e., combining Content and Link using Matrix
Factorization [31]). We do not assume that user tags
are available in the test set; thus, in this paradigm of
latent methods, the user tags are predicated by their
nearest neighbors in the training set.

3. C2MR—C2MR contains two different types—unsu-
pervised C2MR and supervised C2MR.

a. U-C2MR—Unsupervised C2MR. The algorithm
in Section 3 is applied to model the latent space,
which maps the MOs into a latent space from
both content and context links. The parameters �
and � in (10) are chosen from {0.2, 0.5, 1.0, 2.0}
via a 5-folder cross-validation on training set in
terms of the resulting AP. Then, SVM is used to
train classification models from the learned
latent space.

b. S-C2MR—Supervised C2MR. The algorithm in
Section 4 is developed for multimedia annota-
tion. Different from U-C2MR, it directly learns
classifier for the semantic concepts. The para-
meters � and 	 in (17) are chosen from {0.2, 0.5,
1.0, 2.0} via a 5-folder cross-validation on

training set, and the shape parameter � for the
logistic loss is empirically set to be 1.0.

Figs. 6 and 7 illustrate the performances on all the
compared algorithms. From the results, we have the
following observations.

Among CMR, CxMR, and C2MR, the proposed C2MR,
both supervised and unsupervised versions, gain the best
performances in terms of mean average precision (MAP)
over all the 81 concepts. As for U-C2MR, it improves CMR
by 246.8 percent and CxMR by 37.6 percent. Furthermore,
S-C2MR improves CMR by 264.2 percent and CxMR by
44.5 percent. Meanwhile, of all 81 concepts, the proposed
content and context multimedia retrieval methods
(U-C2MR and S-C2MR) perform best on 58 concepts. On
the remaining concepts, their performances only slightly
deteriorate compared to the other algorithms.

Comparing these three paradigms of multimedia retrie-
val methods, CMR performs worst since no semantic
information in user tag is used. CxMR performs much
better than CMR, although the tag link is sparse and noise.
By regularizing the tag links by content links, C2MR
significantly improves CxMR here. This is because, by
mining the similarity information in content links between
MOs, visually similar Flickr images can implicitly “share”
the tag links between each other, which relieves the
problem with sparse tag links. On the other hand, the noise
in tags can also be somewhat reduced in a latent semantic
space by embedding context links and visual geometric
structure in content links simultaneously.

Finally, we illustrate how different algorithms map MOs
into a 2D latent space in Fig. 5. It shows that the proposed
method maps the MOs with the same class (i.e., “cat” in this
example) close to each other so that they have consistent
feature representation in the underlying latent space. It
gives an intuitive interpretation of better performance of the
proposed algorithm since it often becomes much easier to
identify the region corresponding to a certain semantic class
in the latent space where the objects of this class are
mapped together.

6.4 Comparison with Related Algorithms

We also compare the proposed algorithm with the other
closely related algorithms.

1. Fusion—We combine the 137D visual content fea-
tures and the obtained context features in CxMR. The
combined features are used to train SVM model for
each concept. There are the following two different
fusion strategy—early-fusion and late-fusion [23].

a. Early-Fusion: The two kinds of features are
concatenated and directly fed into SVM to train
model for each concept.

b. Late-Fusion: Two SVM models are learned from
visual and PLSI features, respectively, to predict
scores for each concept, and the final prediction
scores are given by linearly combining them in a
late fusion step.

2. SGSSL dn—Sparse graph-based semi-supervised
learning approach together with handling tag
noises [24]. In this algorithm, a concept space is
explicitly constructed from the context links. More-
over, a sparse graph is constructed by datum-wise
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one-vs-kNN reconstructions of all samples in
which a training label refinement strategy is
proposed to handle the noise in the user tags.

3. ML-DML—Multi-Label Distance Metric Learning
[18]. This algorithm learns a semantic distance
metric between visual features from user tags.
Based on the learned distance, SVM is used to
model each concept with a Gaussian kernel by
exponentiating the obtained negative multilabel
distance. Since it leverages user tags, it is compared
with C2MR in the following.

4. CLMF—Combining Content and Link using Matrix
Factorization [31]. This algorithm combines the
content and link analysis using matrix factorization.

It attempts to symmetrically factorize context matrix
and asymmetrically factorize content matrix. In this
model, some extra latent variables are used to model
context topics.

By comparison, in Fig. 7 C2MR shows it can more effectively
model the two links than the other fusion methods in terms
of MAP. U-C2MR improves Early-Fusion by 52.7 percent,
Late-Fusion by 35.3 percent, SGSSL_dn by 225.8 percent,
and ML-DML by 247.0 percent and CLMF by 15.6 percent.
S-C2MR improves Early-Fusion by 60.3 percent, Late-Fusion
by 42.1 percent, SGSSL_dn by 242.1 percent and ML-DML
by 264.2 percent, and CLMF by 21.4 percent.

In Fusion methods, Late-Fusion outperforms Early-
Fusion. It indicates that simply concatenating context and
content feature vectors together into a higher dimensional
vector cannot effectively utilize the context and content
links. On the contrary, it is proven in the experiments that
C2MR models a more informative latent space from the
content and context links.

Finally, the comparison between ML-DML, SGSSL_dn,
and C2MR also shows C2MR can better utilize the
information in the links of MINs. Although SGSSL_dn
attempts to handle the noisy tags in context links, it does
not solve the problem with sparse context links. Moreover,
the concept space in this approach constructed from user
tags is usually far from perfect due to the semantic gap. This
makes it difficult to further improve the performance of
multimedia retrieval built on this concept space. Although
ML-DML also utilizes user tags to learn a discriminant
metric structure in visual feature space, it does not explore
the geometric structure in either content links as U-C2MR or
the context links as S-C2MR. Moreover, it does not look into
the intrinsic latent space of either the tag vectors, as U-
C2MR or the label vectors of semantic concepts, as S-C2MR.

Although CLMF attempts to incorporate content in-
formation into context analysis, it uses two matrices to
separately factorize the context and content links. On the
contrary, the proposed model learns a shared latent
matrix H from content and context links simultaneously.
Indeed, from the practical perspective, one extra matrix
for either content or context links is unnecessary in
multimedia retrieval, and it needs extra training samples
to learn a satisfactory model. With more compact latent
structure, the proposed algorithm is more compact than
CLMF with shared latent matrix and thus has better
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Fig. 6. Comparison of different algorithms over 81 concepts on the Flickr
data set in terms of AP. The figure can be enlarged in the electronic
version.

Fig. 5. Illustration of different algorithms of mapping of MOs into a 2D latent space. The gray points correspond to the MOs in the corpus, and the red
ones correspond to those of “cat” images. (a) CMR: Mapping MOs into the 2D space by applying principal component analysis to visual features of
images. (b) CxMR: Mapping MOs by PLSI into the 2D space. (c) U-C2MR: Mapping MOs into the 2D space by the proposed latent method in Section 3.



performance, as shown in experiment. Moreover, the
proposed model can reduce the noise-induced uncertainty
by low-rank prior, and the sparse context links are
complemented by embedding MOs into their content
linkage structure.

6.5 Comparison between U-C2MR and S-C2MR

Finally, we compare U-C2MR and S-C2MR. As shown in
Fig. 7, S-C2MR performs slightly better than U-C2MR by
5 percent improvement. The reason is that S-C2MR aims at
directly learning the semantic concepts for annotation in a
unified framework and it utilizes extra discriminant
information to learn the corresponding model for the
target concepts.

6.6 Computing Time

Experiments are conducted on a platform with Intel Xeon
CPU 2.80 GHz and 8 G physical memory. Table 1 illustrates
the computing time of different algorithms compared
above. Since CMR is conducted directly on low-level feature
space without modeling the latent space, its computing time
is not listed. By comparison, both U-C2MR and S-C2MR are
more computationally efficient than CxMR and SGSSL_dn,
and have a similar computation load as CLMF. On the other
hand, although U-C2MR and S-C2MR perform more slowly
than ML-DML, they improve the performance of ML-DML
significantly as shown in the above.

7 CONCLUSION

In this paper, we propose an algorithm which discovers the
latent semantic space from both context and content links in
MINs. The algorithms solve the problem with sparse context
links by enriching the MINs with content links, and MOs are
embedded into a geometric structure underlying their
content information. We extend the traditional LSI algorithm
by low-rank approximation in which the information from
the content links is seamlessly incorporated. The learned
latent semantic space can be applied for many applications,
such as multimedia annotation and retrieval. Specifically,
we develop a context-and-content-based multimedia anno-
tation algorithm which can learn the concept models from
the context links and content links simultaneously based on
the intrinsic low-rank structure in the latent concept space.
For evaluation, we compare the proposed algorithm with
other multimedia retrieval paradigms with either content or
context links on a real-world Flickr data set. Other related

algorithms in MINs are compared as well. The results show
that the proposed algorithm is quite effective to integrate the
content and context links for semantic retrieval over all
81 concepts from Flickr data set.
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