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Abstract—Link prediction is one of the most fundamental problems in graph modeling and mining. It has been studied in a wide range

of scenarios, from uncovering missing links between different entities in databases, to recommending relations between people in

social networks. In this problem, we wish to predict unseen links in a growing target network by exploiting existing structures in source

networks. Most of the existing methods often assume that abundant links are available in the target network to build a model for link

prediction. However, in many scenarios, the target network may be too sparse to enable robust inference process, which makes link

prediction challenging with the paucity of link data. On the other hand, in many cases, other (more densely linked) auxiliary networks

can be available that contains similar link structure relevant to that in the target network. The linkage information in the existing

networks can be used in conjunction with the node attribute information in both networks in order to make more accurate link

recommendations. Thus, this paper proposes the use of learning methods to perform link inference by transferring the link information

from the source network to the target network. We also note that the source network may contain the link information irrelevant to the

target network. This leads to cross-network bias between the networks, which makes the link model built upon the source network

misaligned with the link structure of the target network. Therefore, we re-sample the source network to rectify such cross-network bias

by maximizing the cross-network relevance measured by the node attributes, as well as preserving as rich link information as possible

to avoid the loss of source link structure caused by the re-sampling algorithm. The link model based on the re-sampled source network

can make more accurate link predictions on the target network with aligned link structures across the networks. We present

experimental results illustrating the effectiveness of the approach.

Index Terms—Link prediction, link transfer, cross-network bias, node attribution, link richness
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1 INTRODUCTION

THE goal of link inference in a certain network is to pre-
dict links between nodes based on its current structure

and the content in the nodes [1], [2], [3], [4], [5], [6], [7], [8].
Most of the existing techniques predict the links in a grow-
ing network based on its local structure. They often assume
that two nodes are more likely to be linked, if they are struc-
turally reachable through some existing nodes. For exam-
ple, in many social networks, link predictions are made
between two nodes, when the two nodes have common con-
tacts in the networks.

The structural information in a network has been proven
extremely powerful and reliable for link prediction [7]. Use-
ful structural information includes the number of common
neighbors (CN), and the length of the shortest path between
the nodes. However, such an approach becomes vulnerable
if insufficient structural information is available in an
“infant” network with sparse links, because a given pair of
nodes may not have a lot of common neighbors or be con-
nected by a short path, even when they are closely related

to one another. Therefore, the traditional methods for link
inference can fail because of the paucity of available struc-
tural information. The link inference problem is particularly
important for the sparse (or new) networks to grow, whose
basic structure of the networks is not known to a large
degree. Therefore, the existing methods for link inference are par-
ticularly challenged in scenarios where link inference plays the
critical role for recommending relationships and growing social
networks.

In this paper, we will develop the cross-network link pre-
diction (CNLP) model, which attempts to leverage the exist-
ing link information in a mature source network (e.g.,
Facebook) to predict the links in a relatively new network
(e.g., Google+). The link inference problem can also be
treated as a classification problem in which the derived
features between node pairs, such as structural connections
or attribute correlations, can be used to build prediction
models on the training data of which the existences of links
are known. They can then be applied to the target network
to predict the potential links between node pairs. The
connection between the link inference problem and the clas-
sification problem motivates a natural approach in which
both the structural and attribute information are extracted
in order to enhance the link inference model. This is related
to the problem of transfer learning [9], which is widely used
to mitigate the problem with paucity of data in one
domain by incorporating rich auxiliary information from
the other domains.

Social networks typically contain a rich amount of con-
tent attributes at the nodes, which can be used as a bridge in
order to connect the linkage behavior of the two networks.
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For example, if nodes containing the keyword Copperbeach
High School: Class of 1989 are highly connected to one
another in the training network, it provides a hint that these
nodes may also be connected in the second network. In
such a case, the nodes may not exactly correspond to the
same actors, but the keywords point to an interest that is
highly related to linkage behavior. Therefore, the transfer
process needs to learn the content that is most highly corre-
lated to the linkage behavior. In combination with the sparse
linkage information in the target network, it may be possible
to significantly enhance the link inference process.

In some cases, a particular combination of keywords
may be useful in order to predict links between nodes. For
example, the training data may suggest that certain combi-
nations of keywords in a pair of nodes may be highly indic-
ative of a link, though the keywords may not exactly be the
same. For example, the keywords {IBM machine learning}
may be highly linked with nodes containing {IBM data min-
ing}, though it may not be as closely related to nodes con-
taining the keywords {IBM Systems and Hardware}. Thus,
the precise combination of content needs to be learned from
the training network in the transfer process. Furthermore,
the sparse structural information can be more effectively
used when such content information is available. For exam-
ple, the presence of only one common friend between two
nodes in the sparse target network may not constitute suffi-
cient information for link inference, but the presence of the
keywords {IBM machine learning} and {IBM data mining}
may significantly enhance this probability.

In many cases, a combination of the content information in
the training network and the (sparse) structure of the target
network can be used in order to make effective inferences
about the links in the target network.

1.1 Barrier to Transferring Link Information across
Networks: Cross-Network Bias

In this paper we will develop a cross-network link predic-
tion model by using the linkage information in the source
network in order to predict links in the target network. This
is different from traditional link inference, in which only the
previous links of a single network may be used for its future
link prediction. A natural challenge inherent in such an
approach is that the two networks are distinct, and may
even be drawn from different domains, such as a traditional
social network and a bibliographic network. This implies
that the source and target networks may be generated from
very different distributions. Even in cases, where the net-
works are drawn from similar domains, there are likely to
be inherent differences in the content and structure of the
two networks. This leads to a significant amount of cross-
network bias, which can be very detrimental to the transfer
process, in the form of significant errors and over-fitting.
Thus, a blind transfer process may not be very helpful for
effective learning in the link inference process. In this paper,
we propose a network re-sampling technique for carefully
calibrating the portions of the source network to be used in
the transfer process. This provides a bias-correction meth-
odology, which is combined with a transfer learning-based
linked prediction model for ensuring robust and effective
link prediction.

This paper is organized as follows. In Section 2, we will
review the related work and their limitations. Then we
will formalize the cross-network link prediction problem
and present the main ideas and challenges in Section 3. A
link model is built on the source network in Section 4. In
Section 5, a re-sampling process will be proposed to align
the link structures between the source and target net-
works, so that the link information can be shared and
transferred between the networks based on the link model
in Section 4. We present experimental results in Section 6
to demonstrate the effectiveness of our approach. The con-
clusions and summary are presented in Section 7.

2 RELATED WORK

The problem of link prediction has been studied extensively
in the data mining and machine learning community [10].
Much of the work on this problem is based on defining
proximity-based measures on the nodes in the underlying
network [7], [11], [12]. The work in [7] studied the useful-
ness of different topological features for link prediction. It
was discovered in [2] that none of the features was particu-
larly dominant in different kinds of situations. A second
approach is to study the problem in the context of statistical
relational models [3], [13], [14], [15], [16], [17].

The link prediction problem has also been studied
more generally in the context of the classification problem
[2], [5], [6]. Specifically, the existence of an edge between
a pair of nodes can be considered a binary class label,
which can be predicted with the use of either derived or
existing attributes between the pair of nodes. For exam-
ple, the similarity in content-attributes (existing textual
information), and the similarity in structural neighbors
correspond to derived attributes, which can be used for
link inference. Intuitively the larger the similarity
between the node pair, the more likely a link will exist. It
is possible to use the current set of links in order to create
a training data set, which is used for link inference [2],
[5], [6] for node pairs in which the presence or absence of
links is unknown. The connections of the link inference
problem with that of classification point to a natural
approach of using transfer learning methods [18], [19] for
transferring knowledge from mature networks with
dense linkage behavior to the target (sparse) network in
which a paucity of linkage information is a problem for
the learning process.

Recently, some researchers have noticed and work on this
link transfer problem. For example, a method has been pro-
posed for labeling already existing edges in a social network
with the use of labeling information from another network
[20]. This is different from the problem of link prediction
discussed in this paper, where the actual existence of a link
needs to be predicted.

Ye et al. [21] also proposes a transfer learning algorithm
for link prediction. This method constructs latent topologi-
cal features in a shared space on both source and target
networks. While it attempts to integrate the linking infor-
mation in both networks, it is risky of involving the irrele-
vant structures in source network in predicting the links in
target network. On the contrary, we explicitly re-sample
the most relevant structures in the source network, which
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can mitigate the cross-network bias when transferring the
linking information.

In addition, [22] develops a de-anonymizationmethod for
link prediction by finding the correspondence between net-
works. It de-anonymizes a target network by weighted
graph matching with the help of an efficient simulated
annealing method. Compared with the problem they
addressed, we instead focus on a more challenging one,
where the source end target networks come from completely
different social media platforms. That means the graph
matching technique may fail as their topological structures
almost completely differ from one another. That is why we
propose to sort to the content information that reveals
important auxiliary information for link transfer, in addition
to the topological features used in most of existing link pre-
dictionmodels.

3 OVERVIEW

In this section, we will define the link inference problem, as
it relates to cross-network transfer learning. We denote the
source network by G 0 ¼ ðV 0; E 0Þ, and the target network by
G ¼ ðV; EÞ. The links need to be predicted in target network
G ¼ ðV; EÞ that is assumed to be nascent and sparse. The
node sets in the source and target networks are denoted by
V0 ¼ fv01; v02; . . . ; v0mg and V ¼ fv1; v2; . . . ; vng respectively.
Each edge is denoted by ðv0i ; v0j Þ 2 E0 and ðvs; vtÞ 2 E respec-
tively. For ease in notation, we will use different subscripts
i; j and s; t to differentiate the nodes and edges in G 0 and G
respectively. The source network G 0 is assumed to be a
mature network of nodes and edges that has more linkage
information than the target network G. Thus, the source net-
work G 0 contains substantially more linkage and content
knowledge, which can be leveraged for the link inference
process. The correspondence between the nodes in V and
V 0 is unknown, and the only information that relates the
nodes in V and V 0 is the available attribute information at
the nodes. In fact an exact correspondence may not even
exist, especially since one of the networks is likely to be sig-
nificantly larger than the other. In some cases, the networks
may be pre-labeled with the actor name, though this does
not necessarily provide exact correspondence, given the
enormous ambiguities inherent in such labels. Such a label
can at best be considered an attribute of the node, which
can be used in order to help the transfer process of the link
structure. In other cases, the networks may be anonymized,
and only a limited amount of attribute information (such as
keywords corresponding to the profile) may be available.
However, the network does provide useful information
about the nature of the attributes in the two networks that
more likely to be linked together. We assume that each
node in V (and V 0) is associated with a set of keywords that
are derived from the profile information in the two social
networks. Specifically, we denote the attributes associated
with the node vs 2 G and v0i 2 G 0 by feature vectors xs and
x0
i in the vector space Rd of dimension d. These keywords

may include the actor name in cases where such informa-
tion is available. The cross-network link prediction problem
is defined as follows:

Problem 3.1 (Cross-network link prediction). Given the
training network G 0 ¼ ðV 0; E 0Þ, along with its associated

content attributes x0, determine the links that have the highest
probability to appear in the future in a currently existing target
network G ¼ ðV;AÞ with corresponding content attributes x.

3.1 Broad Intuition and Preliminaries

The task of cross-network link prediction is to leverage the
link structure in the source network in order to predict the
links in target network. In many previous works [5], [16],
[15], [7], [6], the most direct approach is to train a link model
from a given network in order to predict the future links
within the same network. In some sense, the traditional link
prediction problem can be considered a special case of
cross-network link prediction, in which the target network
is the same network as the source network at a future point
in time. The cross-network link prediction considers much
broader scenarios, where the source and target networks
may have completely different sets of nodes. For example,
the source and target networks could be distinct social net-
works, (such as Google+ and Facebook networks), or they
could correspond to co-authorship networks between
authors from different research areas.

One of the crucial parts of link prediction process is to
design a knowledge transfer relationship of the content at
the different nodes with the linkage probability between
the nodes. This knowledge is particularly useful for the
facilitation of accurate inferences of the links among the
nodes in the two networks. Of course, the relationship of
the linkage probabilities to the node content may not be
precisely identical between the two networks. For example,
consider two co-authorship networks, which are focussed
on the different topics of information retrieval and web min-
ing. Although the researchers in these two networks have
research interests and expertise in common, their underly-
ing distributions in the two networks may be quite different.
While a relatively larger number of the researchers in the
information retrieval network may concentrate on retrieval
theory and models, more researchers in the web mining net-
work may be interested in web search and mining. Therefore,
the same content may have different linkage relevance and
distribution in different networks. This also means that the
relationship of linkage structure to content may vary in the
two networks to some extent. As the collaboration links are
created based on the common research interests and exper-
tise between authors, this implies that a direct transfer of
the content-link relationships in the source network to the
target network may not be very helpful. This is essentially a
form of cross-network bias in the learning process. Therefore,
we need to design methods that are robust to variations
between the two networks. In order to achieve this goal, we
will propose a cross-network transfer model, which uses a
link-sampling parameter as an integral part of the model.
Then, we will discuss how the cross-network bias can be
eliminated with the use of careful sampling of the links dur-
ing the transfer process.

In Fig. 1, we plot an overview of the proposed link trans-
fer algorithm across networks. It consists of three main steps
as follows:

1: Re-sampling the source network to rectify the cross-
network bias. This can be accomplished by maximiz-
ing the cross-network relevance between the nodes
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in the source and target networks, subject to maxi-
mizing the loss of link information in social network.

2: Training the cross-network link prediction model
based on the re-sampled source network, along with
the existing link information in the target network.

3: Applying the learned link model to the target net-
work to infer the unknown links.

In the following sections, we will explain the components
of the algorithms step by step.

4 CROSS-NETWORK LINK MODEL

In this section, we will show how to leverage the link infor-
mation in the source network in order to predict the links in
the target network. Associated with each link in the source
network, we will define a sampling parameter Pij, which
essentially represents the importance of a link between the
ith and jth nodes in the source network during the link
transfer process. This is essentially a way of calibrating
cross-network relevance during the link-transfer process. In
this section, we will design a link-transfer model with the
general use of this sampling parameter, without discussing
how it is derived. In a later section, we will explicitly dis-
cuss how this parameter is actually determined by address-
ing the dual goals of cross-network bias correction and
structural richness.

Our model for cross-network link transfer uses a latent
space approach that relates the network attributes to
the probability of link presence in the source and target
networks. This is used in order to perform the knowl-
edge transfer between the source and target networks.

Furthermore, as the target network evolves over time,
new links will be created between nodes and become
available for learning in the target network. These links
provide auxiliary knowledge about the link structure in
the target network that are complementary to the link
information in the source network. As in the case of tra-
ditional link prediction, such links can be used in order
to improve the effectiveness of the transfer process.

Before discussing the model in detail, we will introduce
some notations and definitions. The current target network
is denoted by G ¼ fV; Eg, where V ¼ fv1; v2; . . . ; vng is its
node set, and ðvs; vtÞ 2 E is an edge in G. The attribute vector
associated with each node vs in the target network is
denoted by xs. For example, in a co-authorship network, the
attribute vector of an author node may correspond to the
keywords of their published papers. In the context of a tra-
ditional social networks such as Facebook and Twitter, such
attributes may correspond to the content of the posts and
the profiles of the network actors. Similarly, we have a
source network G 0 ¼ fV0; E0g, with analogous attribute
information associated with the nodes. Since the informa-
tion associated with the different nodes in the source and
target networks are analogous, we consistently use the
superscript “0” in all source network notations, in order to
distinguish from the target network. Then, the link predic-
tion in the target network can be solved by combining the
link and content information in the source network G 0 with
the currently existing link and content information in the
target network G in order to predict the future links in the
latter network.

The link prediction problem can be formulated as a
learning problem on the links and the associated node con-
tent [23]. Specifically, the content vectors x0

i for each node v0i
in G 0 and xs for vs in G are mapped to ’’0

i and ’’s in a latent
topic space Rk respectively, by a linear transformation as
’’0i ¼W � x0

i and ’’s ¼W � xs with the k� d matrix W. Here
k is the dimension of the latent topic space, and the value of
k can be chosen based on the Bayesian information criterion
(BIC) [24]. It is assumed that the matrix W needs to be
learned, and the goal of this learned topic space is to maxi-
mize the log likelihood of the link prediction probabilities of
our content and structural model for link prediction. The
social interaction between two nodes vs and vt in the target
network can be measured by the inner product ’’0s � ’’t

between the corresponding latent vectors. In other words,
this social interaction measures the similarity between the
content-based latent vectors associated with these two
nodes. For example, the collaboration links between the
authors in a co-authorship network can be inferred based
on the similarity between the latent topic vectors of their
research interests and expertise. Therefore, we will model
the link prediction probabilities as a function of these simi-
larity values [25], and then try to learn the precise function,
which maximizes the log-likelihood probabilities. Thus, the
matrix W plays a key role in the inference process, and it is
critical to learn its optimal value in order to infer the links.

In addition to the link-attribute interaction, which is
encoded in the associated content-based latent vectors, the
topological features, such as common neighbors of the two
nodes vs and vt and Adamic-Adar (AA) [11], provide useful
topological hints to infer the future links in the network. In

Fig. 1. An overview of the proposed cross-network link transfer
algorithm–Step 1: re-sampling the source network to rectify the cross-
network bias; Step 2: training the cross-network link prediction model
based on the re-sampled source network, combined with the existing
link information in the target network; Step 3: applying the learned link
model to the target network to infer the unknown links.
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this paper, we use the Adamic-Adar feature bst defined on a
pair of nodes vs and vt to capture the common neighbors in
the target network. This feature is chosen for its effective-
ness in modeling the local topological structure in the net-
works [11]. Specifically, AA feature measures the similarity
between a pair of nodes in a network as the number of their
common neighbors with different importance weighted by
their rarity. The idea that is the common neighbors unique
to fewer nodes are more effective in connecting people than
those nodes with a larger group of neighbors [11]. Then, the
probability that the two nodes vs and vt will be linked in the
future is modeled as a combination function of the latent
vector and structural (Adamic-Adar) components:

Prðyst ¼ þ1jGÞ ¼ fð’’0s � ’’t þ a � bstÞ; (1)

where yst ¼ þ1 indicates there will be a link between vs and
vt in the future, and yst ¼ �1 indicates otherwise. We note
that the sigmoid function fðzÞ ¼ 1=ð1þ expð�zÞÞ, which is
used to represent the expression for Prðyij ¼ þ1jGÞ will
always lie in ½0; 1�. The parameter a � 0 is the combination
coefficient, which determines the relative importance of the
two terms. It is noteworthy, that the determination of matrix
W directly yields the probabilities of the links Prðyst ¼
þ1jGÞ, which can be directly used for link prediction. There-
fore, it remains to discuss how the matrix W should be
learned in an optimal way. We further note that while the
above computation is performed on the target network, the
matrixW is determined with the use of an optimally picked
joint latent space in the source and existing target networks.
This ensures that the link-prediction process encodes the
knowledge available in the both networks for the transfer
process.

The learning process for the matrix W tries to determine
a topic space in which nodes with relevant content in them
(based on source matrix connectivity), as well as nodes that
are topologically well connected in the target network tend
to be placed close together in the topic space. Specifically,
the learning process contains two components in the objec-
tive function, which are used to perform the prediction:

� The current state of the (nascent) target network in
terms of its content and structure, which may con-
tain some information for link prediction.

� The cross-network knowledge that is transferred
from the source to the target network.

In the following, we will design an objective function that
contains components for both of the above, and learn the
matrix W, which maximizes the log-likelihood probabilities
for link prediction. In order to learn the mapping for the
latent space, we have the following logarithmic likelihood
of the existing links in the target network G:

L ¼
X

ðvs;vtÞ2E
logfð’0s � ’t þ a � bstÞ

¼ �
X

ðvs;vtÞ2E
‘ð’0s � ’t þ a � bstÞ:

(2)

We assume that ‘ðzÞ ¼ logð1þ expð�zÞÞ is the logistic loss
function, and the corresponding maximum likelihood crite-
rion is essentially equivalent to performing logistic regres-
sion (LR) on the variables corresponding to the existence of

the network links. We note that the value L is the first com-
ponent of the objective function that uses information only
about the target network, without considering the cross-net-
work information from the source network.

As mentioned earlier, the links in the current target net-
work G are quite sparse in scenarios where the network is
nascent, and it is not sufficient to either perform traditional
link prediction, or to yield a robust enough latent topic
space in which the social interactions between the nodes
can be predicted. In contrast, the source network contains
rich linkage information for learning the robust representa-
tion of latent topics. For this purpose, we combine the
model with knowledge from a re-sampled source network
based on a sampling importance of the link between nodes
v0i and v0j , denoted by Pij. This forms the second component
of our objective function, and can be written as follows:

L0 ¼ �
X

v0
i
;v0
j
2V0

Pij � ‘
�
y0ij � ’’00

i � ’’0
j

�
: (3)

We assume that a link exists between v0i and v0j when y0ij ¼ 1,
and otherwise when y0ij ¼ �1. The above equation equals
the expected log likelihood of links over the sampled source
network. This component in the objective function provides
an effective transfer learning of the content-link relation-
ships in the source network.

The parameter Pij in Eq. (3) weighs the importance of
sampling the link ðv0i ; v0j Þ in the source network. It is note-
worthy that the importance weights Pij play a crucial role in
sampling the relevant link information in the source net-
work for an effective transfer learning process. Due to the
afore-mentioned cross-network bias, not all the links in the
source network are generated from the same distribution
underlying the target network. Therefore, if we equally
weigh all the links in the source network, this can under-
mine the link transfer process between the networks. There-
fore, in the next section, we present a method for re-
sampling the source network to correct the cross-network
bias. This provides the probability Pij, which is used above.

By maximizing the combined log-likelihood of links in
the source and target networks, we can learn the optimal
latent transformation matrixW:

W$ ¼ argmax
W
� L� hL0 þ gkWk22

¼ �
X

ðvs;vtÞ2E
‘
�
x0sW

0Wxt þ abst
�

� h
X

v0
i
;v0
j
2V0

Pij‘
�
y0ijx

00
i W

0Wx0
j

�þ gkWk22:
(4)

The last term imposes a regularizer for better generalization
performance, and h and g are the balancing parameters
trading off between the different terms in the objective func-
tion, which correspond to the cross-network information
from the source, and the existing information in the target.
The above objective function is differentiable with respect
to the parameterW, and can be efficiently solved by the off-
the-shelf unconstrained optimization solver such as conju-
gate gradient method [26].

Once the optimal latent representation parameterized by
W is learned from the above objective function, we can
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compute the value of the expression ’’0s � ’’t þ a � bst. This
expression can be used in conjunction with Eq. (1) in order
to predict the probability of a link between a pair of nodes.

5 CROSS-NETWORK BIAS CORRECTION

In this section, we will discuss the determination of the sam-
pling weights Pij used in Eq. (3) of the last section, in order
to correct for bias. The idea is to ensure that the links in the
target network, which are consistent with the source net-
work in terms of the node-content relationships are given
much greater importance. At the same time, the re-sampling
process also need to preserve the richness of link structure
in the source network as much as possible, in order to maxi-
mize its utility in the learning process.

The existing distribution bias correction algorithms [9] on
traditional relational data calibrate the sample bias between
the training and test data sets, by minimizing the sample
mean between the training and test data sets. However,
such an approach is not designed for network structural
data, in which the link information needs to be retained dur-
ing the sampling process. Therefore, we present a new
approach to correct the cross-network bias, which also pre-
serves and transfers the link information in the source net-
work to the target network.

Fig. 2 illustrates an example of cross-network bias
between the source and target networks. For illustration, we
have presented some important attributes associated with
the nodes. The closer the two nodes are, the more relevant
their attributes are to each other. It is evident that the nodes
fv01; v02; v03; v04; v05g in the source network are more relevant to

the nodes in the target network. Consequently, they provide
more linking clues to the target network and they should
have larger sampling weights than fv06; v07g in the re-sam-
pling process. On the other hand, the re-sampling process
ought to preserve as much link information as possible as to
minimize the lost link information in the source network.
For example, in Fig. 2 the link structure between the rele-
vant nodes fv01; v02; v03; v04; v05g should be kept intact to pre-
serve the links incident with these relevant nodes. By
correctly sampling these links and nodes, the obtained re-
sampled source network provides a more robust template
for the transfer process.

In this section, we will discuss the basics of the re-sam-
pling process. The broad goal of this process is to achieve
the following:

1. Maximize the consistency between the source and
target networks in terms of the attributes associated
with their nodes.

2. Preserve the richness of the structure of the sam-
pled network, so that as much structural informa-
tion as possible is available for the transfer learning
process.

We provide quantifications of the afore-mentioned crite-
ria, so that a concrete tradeoff may be obtained for creating
the re-sampled network in the transfer process.

5.1 Re-Sampling the Source Network

In the re-sampled source network, each node is sampled in
iid fashion according to a weighting distribution bb ¼ fb1;
b2; . . . ;bng on the node set V0 of the source network, where

Fig. 2. An example of the bias in attribute information associated with source and target networks.
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Pn
i¼1 bi ¼ 1;bi � 0. Formally, we have the following defini-

tion for a re-sampled source network:

Definition. A re-sampled source network G 0 ¼ fV 0
; E 0

;bbg is a
stochastic network structure, whose nodes are sampled from
the node set V 0 of the source network G0 according to the sam-
pling weights bb. Formally, a node U in the re-sampled network
G0 is a random variable that takes on values from V0 with the
probability that PrðU ¼ v0i Þ ¼ bi for i ¼ 1; 2; . . . ; n.

By the above definition, the probability Pij of sampling a
link ðvi; vjÞ 2 E0 in the re-sampling process can be computed
as follows:

Pij ¼ PrððU;WÞ ¼ ðvi; vjÞÞ
¼ PrðU ¼ vi;W ¼ vjÞ þ PrðU ¼ vj;W ¼ viÞ
¼ PrðU ¼ viÞ � PrðW ¼ vjÞ þ PrðU ¼ vjÞ � PrðW ¼ viÞ
¼ 2bi � bj:

(5)

In the second equality, we assume that the two random var-
iables U and W corresponding to the nodes are indepen-
dently sampled from V0. This re-sampling probability Pij of
the links in the source network is the critical parameter that
is require to complete the transfer learning model of the last
section, according to Eq. (3).

Since the value of Pij depends upon the sampling distri-
bution bb, our goal is to determine the value of bb, which min-
imizes the cross-network bias, while retaining the richness
in network structure. We will discuss the quantification of
these goals in the following two sections, and the optimal
determination of the distribution bb on this basis.

5.1.1 Cross-Network Relevance

The relevance RðG 0;GÞ between the source and target net-
works measures the consistency of the distributions under-
lying these two networks. A naive method for computing
the cross-network relevance without considering node dis-
tributions, would be to simply measure the average attri-
bute similarity between the nodes of the networks. Such a
naive definition of relevance would be as follows:

R G0;G� � ¼ 1

nm

Xn
i¼1

Xm
s¼1

S
�
v0i ; vs

�
: (6)

Here, Sðv0i ; vsÞ is the similarity between the attributes of the
nodes v0i and vs. These attributes may correspond to differ-
ent kinds of content in different networks, such as the publi-
cation content in research networks, or the user-posted
messages in social networks. In our paper, we use the cosine
similarity as the similarity function Sð�; �Þ. Ideally, if the
nodes in the two networks are generated from the same dis-
tribution underlying their attributes, the cross-network rele-
vance is maximized.

Next, we can generalize the naive definition of cross-net-
work relevance to measure the relevance between the re-
sampled source network G 0

parameterized by the node dis-
tribution bb and the target network G in our problem. Instead
of averaging over all nodes in the source network, we need
to compute the expected value based on the sampling distri-
bution bb. Consider a node U sampled from the node set V0
according to the distribution bb in the re-sampled source

network. Its average relevance to the nodes in the target net-
work is defined as follows:

R U;Gð Þ ¼ 1

m

Xm
s¼1

S U; vsð Þ: (7)

Since U is a random variable from V0, the function RðU;GÞ is
also a random variable, for which we can compute an
expected value. This provides a measure of the cross-net-
work relevance between the re-sampled source network
and the target network. Thus, we have:

EV�bbR U;Gð Þ ¼ EV�bb
1

m

Xm
s¼1

S U; vsð Þ

¼ 1

m

Xm
s¼1

EV�bbS U; vsð Þ ¼ 1

m

Xm
s¼1

Xn
i¼1

biS v0i ; vs
� �

¼ 1

m

Xm
s¼1

Xn
i¼1

biS v0i ; vs
� �

:

(8)

When bb is uniformly distributed on the source network,
bi ¼ 1

n, the above equation reduces to afore-mentioned naive
definition of Eq. (6). Then, we define the cross-network rele-
vance between the re-sampled source and the target net-
works as follows:

Rel
�G 0� ¼ EV�bbR V;Gð Þ ¼ bb0u; (9)

where 0 is the transpose operator, and u is a n� 1 vector as

u ¼ 1

m

Xm
s¼1

S
�
v01; vs

�
;
Xm
s¼1

S
�
v02; vs

�
; . . . ;

Xm
s¼1

S
�
v0n; vs

�" #T
: (10)

It is noteworthy that we measure the cross-network rele-
vance based on the node attributes instead of the link attrib-
utes. This is essential, because the target network is
typically nascent, and sufficient links may not be available
for robustly creating such a measure.

The maximization of this cross-network relevance
ensures the determination of a distribution bb, which ensures
that the re-sampled source network is as relevant as possi-
ble for the transfer process. However, it does not guarantee
the richness of the network structure, which ensures that a
sufficient amount of network structure is available for the
transfer learning process. Therefore, we need to create an
additional component for the objective function for optimiz-
ing bb, which measures link richness. The optimization of
this combined measure provides a way to tradeoff between
the cross-network relevance and link richness.

5.1.2 Link Richness

In this section, we will discuss the contribution of the link
richness to the objective function for optimizing the sam-
pling weights bb. Consider two nodes U;W that are indepen-
dently sampled from V0 according to the distribution bb in
the re-sampling process. We can compute the probability
that they sample a link ðv0i ; v0j Þ 2 E0 of the original source
network as PrððU;WÞ ¼ ðv0i ; v0j ÞÞ / bi � bj in Eq. (5). Then,
we can sum up all the sampling probabilities of the links in
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the source network to measure the proportion of the pre-
served links:

Xn
i¼1

 
1

ki

X
j2N i

bi � bj

!
: (11)

Here,N i represents the set of neighbors of the node v
0
i in the

source network, and ki ¼ jN ij is the node degree. For each
node vi, we measure the average sampling probability over
all the links incident with it, and then sum over all the nodes
in the network. The damping factor 1

ki
ensures that densely

linked nodes are not over-sampled excessively as compared
with the sparsely linked nodes. Maximizing the above
results in a rich network, which preserves as much link
structure as possible.

We also need to regularize the sampling weight bi for
each node to prevent over-sampling of some nodes in the
source networks. The following represents the regulariza-
tion terms for the link richness optimization problem on the
sampling weights bb:

1

2

Xn
i¼1

 
1þ

X
j2N i

1

kj

!
� b2

i : (12)

This equation suggests that the sampling weight bi of a
node v0i should be penalized by an extra factor 1

kj
when it is

linked to a neighbor node v0j . In other words, two neighbor-
ing nodes will compete for the distribution of their sam-
pling weights, and the node with dense links should be
penalized to a greater degree to avoid being over-sampled.
This guarantees that a sparsely linked node can still suffi-
ciently be sampled, so as to not lose the overall structural
information in the network.

Combining the richness objective function of Eq. (11)
with the regularization of Eq. (12), we maximize the follow-
ing regularized link richness expression:

LinkRich
�G 0� ¼Xn

i¼1

 
1

ki

X
j2N i

bi � bj

!

� 1

2

Xn
i¼1

 
1þ

X
j2N i

1

kj

!
� b2

i ¼ bb0 � A � bb:
(13)

Here, A is a n� n matrix, with Aii ¼ � 1
2 ð1þ

P
j2N i

1
kj
Þ,

Aij ¼ 1
ki
for j 2 N i, and Aij ¼ 0 otherwise.

The impact of link richness can be explored in terms of
the derivative of the objective function that quantifies it.
The derivative of this link richness function with respect to
a node-specific sampling weight bi is as follows:

@i ¼
 

1

ki

X
j2N i

bj � bi

!
þ
X
j2N i

1

kj
ðbj � biÞ: (14)

If the neighbors of v0i are strongly relevant to the target net-
work with a greater average sampling weight, the first term
will become positive and force the sampling weight bi to
increase, so as to preserve its incident links. In the second
term, for each neighbor v0j of the node v0i , if it is relevant to
the target network with a greater bj, it will also tend to

increase bi to preserve the incident link. Moreover, when v0j
is sparsely linked with a small node degree kj, bi will
increase in order to preserve this link that is more informa-
tive to v0j as compared with the links incident with the other
densely linked nodes in the network. Fig. 3 illustrates
an example. The node v01 has a set of neighboring nodes
fv02; v03; v04; v05g that have greater sampling weights on the
average. In order to preserve the links between them and v01,
the sampling weight of the central node v01 tends to be
increased. On the other hand, among these neighboring
nodes, v05 has only one incident link, which is important to
preserve. As indicated by the second term, the sampling
weight of the central node v01 should be increased more to
preserve this link.

It is evident that the sampling weight of a singleton node
with no incident link will be zero, because the exclusion of
such a node does not lose link information. For a singleton
node v0i , the derivative in Eq. (14) becomes @i ¼ �bi. This
will decrease bi until it reaches zero.

An information Theoretic Perspective of Link Richness. We
can find that the derivative in Eq. (14) disappears when all
the nodes in the source network are uniformly sampled
with an equal sampling weight, except for the singleton
nodes whose weights are set to zero instead. From the infor-
mation theoretic perspective, the uniform distribution over
the nodes gives rise to the maximum information we can
obtain about the link structure for the network. Excluding
the singleton nodes does not lose any information about
link structure since it contains no link information. This will
provide a compact support over the non-singleton nodes in
the network. In other words, according to the link richness
defined above, all non-singleton nodes tend to be sampled
uniformly, which reduces the loss of many important global
link properties, such as the power-law distribution of node
degrees in many real-world networks, invariant network
diameters, and the (dis)connectivity between the nodes in
networks. In this sense, our definition of link richness pro-
vides a reasonable measurement of link information, not
only locally but also globally.

Fig. 3. An example of a central node v01, and its neighborhood. The re-
sampling weight of the central node will be increased by greater average
re-sampling weight of its neighbors.
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5.1.3 Putting It All Together: Combining Cross-Network

Relevance and Link Richness

The optimal sampling distribution bb can be obtained by
maximizing the cross-network relevance RelðG 0

;GÞ, as well
as the link richness LinkRichðG 0Þ of the re-sampled source
network simultaneously. Therefore, we create a combined
objective function for optimization as follows:

b$ ¼ argmax
bb

RelðG 0
;GÞ þ � � LinkRichðG 0Þ

¼ argmax
bb

bb0uþ � � bb0Abb

s:t:;
Xn
i¼1

bi ¼ 1;bi � 0:

(15)

Here, � is the parameter that weighs the relative importance
of the bias-correction and link richness criteria in the opti-
mization process. The projected gradient method [27] can
be applied to optimize the sampling weights bb iteratively as
follows:

bb P
S

bbþ drbbfbb0uþ � � bbTAbbg� �
¼ P
S
bbþ dfuþ 2�Abbg½ �: (16)

Here, d is the step size along the gradient direction in each
iteration. The operator PS½�� is the projection onto the sim-
plex S defined by the constraint as S ¼ fbb 2 RnjPn

i¼1 bi ¼
1;bi � 0g. We use an efficient algorithm discussed in [28] in
order to determine the projection operator, and determine
the optimal solution with iterative application of the pro-
jected gradient method. Before we finish this section, we
would like to comment on a case that our re-sampling
technology reveals when the link transfer may become
difficult. When the most relevant nodes in the source net-
work are far apart from each other, e.g., the shortest path
connecting them is quite long and the nodes on the path are
often irrelevant to the target network, our resampling tech-
nology will not be able to preserve the link structure
between them if we still want to only retain the most rele-
vant part of the source.

6 EXPERIMENTS

In this section, we will test the effectiveness of our approach
for cross-network link prediction. We will demonstrate the
overall effectiveness of the approach, as well as the effec-
tiveness of the bias-correction process.

6.1 Experimental Setup and Data Description

We test the cross-network link transfer algorithms in two
different settings.

First, we collect co-authorship networks from the aca-
demic publication in four areas—database, data mining,
machine learning and information retrieval. It contains the
papers published in 20 major conferences with 28;702
authors. Two authors are linked in the network if they col-
laborate on a paper. This totally forms 66;832 coauthor links,
and each author is linked with 2:3 coauthors on average.
The attributes of the authors in the network are represented
by the 13;214 keywords that are extracted from the title of

their publications. Then Term Frequency and Inverse Docu-
ment Frequency (TFIDF) features are computed as the attri-
bute vector for each author.

Specifically, we combine the publications in three of
these four areas to construct the source network, and the
publications in the remaining area are used to construct the
target network. Thus, we can use this approach to construct
four different data sets, by varying the target network. For
the source network, all the publications are used to extract
the links and attributes in the network. In the target net-
work, we retain the links and attributes from 20 percent of
the publications in order to create the nascent target net-
work. Our goal is to predict the remaining co-authorship
links. This is a challenging link prediction task, because the
link structure of the target network is very sparse.

Second, we also transfer link structure across the co-
author networks extracted from two different data sets—the
Cora research paper data set and the above DBLP data set.
The Cora research paper data set is derived from the origi-
nal Cora Research Paper data set at http://www.cs.umass.
edu/ mccallum/code-data.html. It has 24;961 authors of
19;396 research papers. The goal is to use the coauthor link
information on Cora data set to predict the missing links on
the same DBLP data set as above. Cora and DBLP are inde-
pendently established and maintained, and the co-author
link graph underlying two data set can have different cover-
age of authors and research areas. Actually, in addition to
some closer research areas like machine learning in artificial
intelligence, Cora data set contains the authors from the
areas such as operating systems, security, networking, hard-
ware and architecture. These research areas are quite differ-
ent from the four areas in the above DBLP data set. This
necessitates the rectification of cross-network bias between
these two data sets, so that the link model built upon the
Cora data set can well capture the link structure for the
DBLP data set.

6.2 Baseline Algorithms

We compare the proposed link prediction algorithm with
the following benchmark algorithms:

� Adamic-Adar [11]: It predicts the links between two
authors by their common neighbors in the network.
The neighboring nodes are weighted by taking the
inverse logarithm of their node degrees. The compre-
hensive study conducted in [7] showed this topologi-
cal feature about the network link structure was
particularly useful for link prediction. Therefore, we
adopt it for comparison here as the baseline for link
prediction.

� LR(A+T): It combines the attribute (A) similarity and
topological features (T) such as the Adamic-Adar
between the authors in the network by logistic
regression to predict the links in the target network
[6]. The logistic regression model is trained on both
the source network as well as the current target net-
work with the existing links.

� CNLPwithout re-sampling: This is the cross-network
link prediction model proposed in Section 3, but
without re-sampling process proposed in Section 4. It
demonstrates the baseline performance of our model
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without cross-network bias correction for the link
transfer process.

� CNLP: This is the proposed cross-network link pre-
diction model with the re-sampling algorithm. The
purpose of using two variations of CNLP is to show
the impact of cross-network bias correction on the
transfer learning process for link prediction.

The parameters in these algorithms are tuned by a five-
fold cross-validation process on the current target network.
The link prediction performance is measured based on the
top-K precision withK ranging from 500 to 1;000.

6.3 Link Prediction Results

Link prediction between four areas in DBLP. Fig. 4 illustrates
the link prediction results for the four target networks.
For each target network, we report the top-K precision
results from K ¼ 500 to K ¼ 1;000. It is evident that the
Adamic-Adar algorithm is not as effective as the other
methods, since it only considers the topological features
about the network structure. The exception arises in the
case of the Database network, where it performs better
than LR (A+T) that combines the topological features as
well as attribute features. This is probably a result of
over-fitting to the sparse link structure in the target net-
work in this case. The CNLP without re-sampling outper-
forms Adamic-Adar and LR(A+T) as it simultaneously
explores the target and source network structures for
link prediction in the target network. However, its per-
formance is still not the best, and may sometimes become

comparable with LR(A+T), as in the case of the Machine
Learning and Information Retrieval networks (c.f. Figs. 4c
and 4d). By incorporating the re-sampling algorithm to
correct the cross-network bias, CNLP achieves the best
performance in link prediction. It avoids sampling the
inconsistent link structure in the target network, and
improves the quality of link transfer process in our prob-
lem. In the following section, we will examine the re-
sampling results at a more detailed level, and understand
why CNLP can perform better compared to other
algorithms.

Link prediction between Cora and DBLP. Fig. 5 compares the
Top-K precisions of the four algorithms for link prediction
on the target DBLP network. We can find that without recti-
fying the cross-network bias, the CNLP w/o re-sampling
performs worse than LR(A+T), since the former algorithm
has incorporated the coauthor links from irrelevant research
areas in the source Cora network. These irrelevant links
usually impose bias that makes the link model over-
whelmed by the authors with the profiles and expertise dis-
tinct from the DBLP network.

6.4 Re-Sampling Results

Fig. 6 illustrates the re-sampling results on the source net-
works for the four target networks. For each target net-
work, the collaboration information in the other three
research areas is combined to form the source network. In
this figure, we illustrate the average re-sampling weight
on each link with respect to the different research areas.
We can see that the re-sampling results reflect the rele-
vance between these research areas well. For example, in
Fig. 6a, the Data Mining area is the most relevant to the
Database area, as they usually share many common
research topics evident from the top-ranked keywords in
Table 2. Moreover, in Table 3, we give the top-10 keywords

Fig. 4. Top-K precision for the target co-authorship networks (a) Database, (b) Data Mining, (c) Machine Learning and (d) Information Retrieval. For
each target network, the other three networks are combined as the source network.

Fig. 5. Top-K precision for predicting the co-authorship links in the target
DBLP network.

TABLE 1
The Conferences in Four Different Research Areas

The publications that are used to extract the co-authorship links and
author attributes are obtained from these 20 conferences.
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associated with the top-100 authors re-sampled in the
source network. The keywords that appear in the top-10
keywords of the corresponding target network as in Table 2
are highlighted in bold. This also shows that the re-sam-
pling algorithm corrects cross-network bias. This explains
the better generalization performance for the CNLP algo-
rithm in the target network.

6.5 Computational Efficiency

Finally, we report the running time of our algorithm on
the four target networks. The experiments were con-
ducted on an Intel(R) Xeon(R) 2.40 GHz CPU processor
with 8 GB physical memory and Linux system. The algo-
rithms required about 38.36 seconds to build the link
model and 57.70 seconds to re-sample the source network.
Once the link model was built, the link between the
authors could be predicted in 2:70� 10�5 milliseconds. In
comparison, Adamic-Adar and LR(A+T) took 0:86� 10�5

milliseconds and 1:38� 10�5 milliseconds respectively to

predict the link between the authors. Thus, it is shown
that while our approach provides more accurate link pre-
diction, its computation cost is also comparable as the
other algorithms.

6.6 Parameter Sensitivity

We also test the parameter sensitivity of the CNLP model
here. Table 15 reports the change of the AUC measures with
different � that trades off between the cross-network rele-
vance and link richness as in Eq. (15). Here AUC is a mea-
sure that computes the area under the ROC curve, which
measures the probability that a positive link is put at a
higher rank than a negative link. Compared with the Top-K
precision we used in Fig. 4, AUC provides us a quantity
summarizing the overall precision of the resulting rank list
of predicted links. For the cross-network link prediction
between four areas, we report the average AUC with each
different area as target network and the other three as
source network. For the link transfer from Cora to DBLP,
we directly report the AUC result.

From the table, we can see that the model performance
depends on a balanced consideration of cross-network
relevance and link richness. To one end, when � is set to
a smaller value, only a smaller part of source network is
re-sampled, and a lot of rich link information is lost
accordingly. Extremely, only few nodes most relevant to
the target network will be retained. In this case, the link
prediction model is built upon a very sparse re-sampled
source network, which is inadequate to predict the links
in the target network.

To the other end, when � is set to a larger value, almost
the whole source network is retained without selectivity, no
matter if a particular part of network is relevant or not to

Fig. 6. For the target network (a) Database, (b) Data Mining, (c) Machine Learning and (d) Information Retrieval, the table shows the average re-sam-
pling weights for the links in the source network.

TABLE 3
The Top-10 Keywords Associated with the Top-100 Authors Re-Sampled in the Source Network

The keywords in bold appear in the corresponding top-10 keywords associated with each target network as in Table 2. It is evident that the re-sam-
pling process captures the information in the source networks that is relevant to the target network.

TABLE 2
The Conferences in Four Different Research Areas

The publications that are used to extract the co-authorship links and
author attributes are obtained from these 20 conferences.
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the target network. In this case, the performance of the link
prediction model is also affected adversely by the irrelevant
source network structure. Therefore, the model parameter
should be properly set to ensure a balanced consideration
of cross-network relevance and link richness.

7 CONCLUSIONS

In this paper, we introduce the problem of cross-network
link prediction. The idea is to capture the rich linkage struc-
ture in existing networks in order to predict links in nascent
target networks. A robust link transfer model is proposed
for efficient link knowledge transfer between the networks.
The cross-network bias in the problem is corrected by re-
sampling the source network to avoid model over-fitting.
We present experimental results on real networks in order
to demonstrate the advantages of our approach over exist-
ing methods.
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