
0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Linear Subspace Ranking Hashing for
Cross-modal Retrieval

Kai Li, Guo-jun Qi, Jun Ye, and Kien A. Hua, Fellow, IEEE

Abstract—Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of
large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data
from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance.
Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the
sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank
correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two
groups of linear subspaces, one for each modality, so that features’ ranking orders in different linear subspaces maximally preserve the
cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the
original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The
proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss
function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions
with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal
datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with
only moderate training and testing time.

Index Terms—Cross-modal hashing, large-scale similarity search, image and text retrieval, ranking subspace learning, rank
correlation measures, max-order-statistics.

F

1 INTRODUCTION

Thanks to the rapid advancement of information technolo-
gies, the last decade has witnessed unprecedented growth
in multimedia content generated by all kinds of digital
electronic devices, such as digital cameras, mobile phones
and tablets etc. With its massive and quickly-increasing
volume, multimedia data calls for efficient techniques to
support effective indexing and fast similarity search based
on semantic content.

Hashing has received considerable attention from re-
searchers in addressing the above problems for its stor-
age and computation efficiency [1]. Typically, hashing al-
gorithms transform high-dimensional data into compact
binary codes, resulting in immediate benefits: 1) binary
codes take much less storage compared to the original
high-dimensional float/double vectors; 2) binary bits can be
naturally used for indexing to support fast sublinear search;
3) binary codes enable fast Hamming distance computation
based on bit operations which are extremely favored by
modern computers.

Most earlier hashing techniques [2, 3, 4, 5, 6, 7] are
designed for single-modal data; that is, data can only be
queried by an example from the same modality. However,
multimedia data usually come in different modalities. For
example, an image may be associated with a textual caption
such that both of them describe the same semantic object.
In this case, it’s desirable to use textual queries to search
for relevent images and vice versa. Such scenarios entail
designing hashing techniques to enable similarity search

• Authors are with the Department of Computer Science, University of
Central Florida, Orlando, FL, 32816.
Corresponding author: Kai Li (kaili@cs.ucf.edu)

using data from another modality, which is crucial to many
practical applications [8, 9, 10, 11, 12, 13].

Cross-modal hashing is a challenging problem because
data from different modalities typically have distinct repre-
sentations with incomparable space structures and dimen-
sionalities. Existing algorithms [8, 11, 12, 14, 15, 16, 17, 18, 19,
20, 21] generally follow two steps: first, features from differ-
ent modalities are mapped into a common feature space to
minimize some cross-correlation error; second, hash codes
are generated by binary partitioning of the feature space
obtained through linear or nonlinear transformation of the
original features. Different hashing techniques usually differ
in the first step, where different error functions are defined.
As for the second step, they can be similarly represented as
the binary embedding: h(x;w) = sign(Fw(x)), where x is
the input vector, w is the solution to the optimization prob-
lem in the first step and Fw(·) is a feature transformation
function parameterized by w.

In comparison, we consider a completely different family
of hash functions based solely on the ranking ordering
of feature dimensions. Such ranking-based hash functions
are closely related with rank correlation measures [22],
which have been well-deemed as robust measures in many
performance evaluation schemes. Ranking-based randomized
hashing schemes have been exploited in single-modality set-
tings, and representative works in this category include the
Winner-Take-all (WTA) Hash [23] and the Min-wise Hash
(MinHash) [24]. WTA generates a compact representation
of the input features by ranking the random permutations
of input features and outputs the index of the maximum
feature dimension as the hash code. MinHash is a special
case of WTA for binary input features. These ranking-

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

based hashing schemes rely on the relative ordering of
feature dimensions and are very robust against prevalent
noises and variations that do not affect the implicit ordering
[23, 24]. However, since those hashing algorithms are data-
agnostic and totally based on randomization, it’s typically
necessary to generate sufficiently long codes through a large
number of permutations to achieve desirable performance
[23]. Moreover, since the same sequence of permutations is
needed to generate comparable hash codes, these methods
are only applicable to single-modal data and do not natu-
rally fit into the cross-modal retrieval tasks.

To address the above challenges, we propose to generate
hash codes by ranking optimized linear subspaces instead of
the random permutations of the input features. Specifically,
we learn two groups of linear subspaces jointly, one for each
modality, such that the ranking ordering in one subspace
is maximally aligned with that of the other. Ranking hash
codes learned in this way are highly optimized for cross-
modal similarity search and competitive performance can
be obtained even with very compact codes. Ranking-based
hash functions can be hard to learn in their original form,
due to the highly non-convex and discontinuous nature. We
present a probabilistic relaxation of the original problem,
reformulating it as one that can be flexibly combined with
different loss functions and efficiently solved using stochas-
tic gradient descent algorithms, thus making the training
process scalable with large-scale datasets.

To sum up, we highlight the major contribution of this
paper as follows:

• The proposed method is the first supervised hashing
algorithm that exploits ranking-based hash functions
in cross-modal similarity search. This method gen-
erates optimal linear subspaces where the ranking
ordering of different feature dimensions maximally
preserve the cross-modal similarities.

• We propose an effective relaxation of the original
non-convex and discontinuous problem and refor-
mulate it in a way that can be efficiently solved
by stochastic gradient descent algorithms that are
known to be scalable with large datasets.

• The proposed hashing scheme can easily accommo-
date different loss functions with the same learning
procedure, leading to a flexible cross-modal hash
learning framework.

• We demonstrate through extensive experiments on
real-world datasets that the proposed algorithm out-
performs state-of-the-art hashing schemes in a num-
ber of cross-modal retrieval tasks.

Preliminary results of this work have been published
in [25]. We have made the source code available at
https://bitbucket.org/kailee880209/cmrsh.

2 RELATED WORK

Hashing for uni-modal data has been extensively studied
in the past decade [2, 3, 23, 26, 27]. In contrast, cross-
modal hashing starts to receive increasing attention only
very recently and is the focus of this review.

Cross-Modal Similarity Sensitive Hashing (CMSSH) [8]
and Cross-View Hashing (CVH) [28] are arguably the earli-
est works on this topic. CMSSH sequentially constructs two

groups of linear hash functions and explicitly minimizes the
distances between the Hamming space embeddings of data
from different modalities. CVH extends the unimodal hash-
ing method, Spectral Hashing (SH) [29], to consider both
intra-view and inter-view similarities with a generalized
eigenvalue formulation.

Several new methods were proposed soon after CMSSH
and CVH. Iterative Multi-View Hashing (IMVH) [30] learns
discriminative hash functions by solving a series of bi-
nary label assignment problems. Co-Regularized Hashing
(CRH) [9] learns single-bit cross-modal hash functions by
solving DC (i.e. difference of convex function) programs;
and multiple bits are sequentially learned using boosting.
The same authors of CRH also propose Multimodal Latent
Binary Embedding (MLBE) [31], which takes a probabilistic
generative approach and achieves competitive performance.
However, the prohibitive computational costs for out-of-
sample extensions limit the applications of MLBE to large-
scale datasets.

In order to balance performance and computational
costs, several new methods are proposed. For example,
(PLMH) [32] extends MLBE to learn parameterized hash
functions as the linear combination of a small set of anchor
points. Similar ideas have also been exploited in Linear
Cross-Modal Hashing (LCMH) [33], where a small set of
cluster centroids are used in a similar fashion to the anchor
points in PLMH. Semantic Correlation Maximization (SCM)
[34] integrates semantic label information into a learning
procedure with closed-form solutions and scales to large
datasets by avoiding the explicit computation of pairwise
similarity matrix. Inter-Media Hashing (IMH) [10] incorpo-
rates both labeled and unlabeled data to explore correlations
among multiple media types from large-scale data sources.

More recently, Sparse Multi-Modal Hashing (SM2H) [35]
is proposed to obtain sparse codesets for data objects across
different modalities through joint multi-modal dictionary
learning. Latent Semantic Sparse Hashing (LSSH) [11] and
Collective Matrix Factorization Hashing (CMFH) [12] use
sparse coding and matrix factorization to capture the latent
semantic features of different modalities. Supervised Matrix
Factorization Hashing (SMFH) [36] also uses matrix factor-
ization, however with the addition of graph-regularization.
Semantics-Preserving Hashing (SePH) [18] transforms the
similarity matrix into a joint probability distribution and
approximates the distribution using nonlinear functions
of the pairwise Hamming distance. Quantized Correla-
tion Hashing (QCH) [20] considers both intra-modality
quantization loss and inter-modality correlation in a single
multi-modal objective function. The multi-modal objective
function is further transformed to a unimodal formulation
and optimized through an alternative procedure. Similar
quantization-based cross-modal hashing algorithms include
Cross-Modal Collaborative Quantization (CMCQ) [37] and
Alternating Co-Quantization (ACQ) [38]. Semantic Topic
Multimodal Hashing (STMH) [21] learns a common feature
subspace from multimodal semantic concepts, and encode a
hash bit by examining the existence of a concept.

Neural networks and deep learning have also been used
in cross-modal hashing [14, 16, 39, 40, 41]. Specifically, end-
to-end deep cross-modal hashing frameworks, such as Deep
Cross-modal Hashing (DCMH) [42] are starting to receive

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

attention lately. However, in contrast to the conventional
hash learning research, where the focus is to learn good
hash functions given certain feature representations, end-to-
end hashing focuses on the seamless combination of feature
learning and hash learning, in a way that the feature repre-
sentations can be optimized for hash learning through error
back-propagation. The competitive performance shown in
[42] demonstrates the efficacy of combining hash learning
and feature learning methods.

To sum up, most of the existing hash learning methods
are restricted to a specific class of hash functions featuring
binary partitioning of the projected feature spaces. To the
best of our knowledge, there has been no previous work
exploring ranking-based hash functions in cross-modal hash
learning.

3 LINEAR SUBSPACE RANKING HASHING

3.1 Mathematical Notations
Suppose we have the data sets from two modalities X and
Y . Let DX be a set of dX -dimensional data points {xi}NXi=1

from modality X and DY be a set of dY -dimensional data
points {yi}NYi=1 from modality Y . In addition, we have a set
of inter-modality similarity labels S = {sij} ∈ {1, 0}NX×NY
indicating whether the cross-modal pair (xi,yj) describe
the same concept or not. The similarity labels can be ob-
tained by comparing data points’ semantic labels; or by
thresholding certain metric distances if annotations are not
available. Our objective is to learn two sets of hash functions
H∗ = {h(l)∗ }Ll=1 with ‘∗’ being a place holder for X or Y ,
so that data from both modalities can be projected into a
common Hamming space.

3.2 Ranking-based Hash Function
Most hashing methods choose binary space partitioning
functions (e.g sign() or threshold()) as their hash function.
In contrast, we consider a family of hash functions based
on the max-order-statistics of feature projections onto a K-
dimensional linear subspace. Formally, the hash function
h∗(·) is defined as

h∗(z∗;W∗) = arg max
1≤k≤K

wT
∗kz∗, (1)

where z∗ ∈ D∗ and W∗ = [w∗1 w∗2 · · ·w∗K]T ∈ RK×d∗
defines a K-dimensional linear subspace for ranking fea-
tures. Note that the above hash function generates a single
hash code and we have omitted the superscript ‘l’ to avoid
notational clutter.

Briefly, the hash function defined in (1) encodes an input
data point as the index of the maximum feature dimension
in a K-dimensional linear subspace with W∗ as the basis.
This encoding is entirely based on the relative ordering
of feature dimensions rather than the precise numerical
values. It acts as a nonlinear feature space transformation
and generates an ordinal space embedding. Such ordinal
embeddings share a similar spirit with rank correlation
measures [22], which evaluate the tendency for two ranking
orders to match each other. Such measures are robust against
noise and variation since the metric values do not change
as long as the implicit ordering of two rankings remain un-
changed. Compared to known rank correlation methods, the

max-order-statistics in (1) provide another level of stability
since it’s based on a partial ordering of the ranked feature
dimensions. To see this, the hash codes generated by (1) only
depend on pairwise orders between the maximum element
and the remaining feature dimensions.

Obviously, each hash code generated in this way requires
only dlog2Ke binary bits of storage and therefore a length-
L K-ary code word can be compactly represented using
L × dlog2Ke binary bits. Different values of K lead to
different emphasis on global or local comparisons among
feature dimensions. For instance, K = 2 leads to pairwise
orders among the projected feature dimensions, while a
larger K results in higher-order comparison among the
features. In this spirit, larger values of K place emphasis
on a more global comparison among the features in the
subspace.

3.3 The Connection with WTA
The proposed ranking-based multimodal hashing method
is closely related to WTA Hash [23]. Indeed, WTA Hash is
a special case of the hash function defined in (1) when the
linear subspaces are defined by axis-aligned projections. To
see this, note that each bit of WTA code is specified by a
window size K and a permutation π. For an input data
point, the permutation π reorders its feature dimensions
and outputs the index of the maximum value in the first
K dimensions. This is equivalent to setting the w∗ks in
(1) to columns randomly chosen from a d∗ × d∗ identity
matrix. The restriction to ranking only original feature di-
mensions greatly limits the flexibility of WTA to discover the
potential discriminativity of ranking properties hidden in
arbitrary linear subspaces. In addition, since WTA is based
on random selection of feature dimensions, the hash codes
obtained in heterogeneous feature spaces are incomparable,
thus making WTA inapplicable to multi-modal hashing. In
comparison, the generalized ranking-based hash function
can be flexibly tuned to rank arbitrary feature subspaces
and discover the rank correlation measures across heteroge-
neous data modalities.

3.4 Problem Definition
For each cross-modal training pair (xi,yj) with a similarity
label sij , we define an empirical loss term incurred by the
hash function in (1) as

`(hiX , h
j
Y , sij) =

{
I(hiX 6= hjY), sij = 1

λ I(hiX = hjY), sij = 0
(2)

where I(·) is the indicator function that equals 1 when the
condition holds and 0 otherwise; hiX and hjY are short for
hX (xi;WX) and hY(yj ;WY); and λ is a hyper-parameter
controlling the relative penalty of false positive pairs.

Intuitively, this error function penalizes similar pairs
with different hash codes or dissimilar pairs with the same
hash code. The overall learning objective is to find WX and
WY that minimize the aggregate loss over all the training
pairs,

L(WX ,WY) =
∑
sij∈S

`(hiX , h
j
Y , sij). (3)

Note that WX and WY factor into the above objective
function because hiX and hjY are functions of WX and WY .

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

3.5 Reformulation

The objective function in (3) is hard to optimize due to the
arg max terms, which are typically non-convex and highly
discontinuous. We seek to reformulate the problem first and
then approximate it with a continuous formulation that can
be solved much more easily.

Note that the ranking-based hash function defined in (1)
can be equivalently formulated as

h(z;W) = arg max
g

gTWz,

s.t. g ∈ {0, 1}K ,1Tg = 1,
(4)

where we have dropped the subscript placeholder forX and
Y for notation simplicity. The 1-of-K coding scheme is used
to represent the K-ary hash code for an input feature. To
see the equivalence, the constrained binary code output by
(4) acts as a dimension selector of the maximum dimension
of Wz, where the maximum value can only be obtained
by setting the bit of g corresponding to the maximum
dimension to 1. We remark that the reformulation is only
for formulation convenience. It does not increase the storage
cost of a ranking hash code, i.e., only dlog2Ke bits are
needed to store a K-ary code word.

Actually, the vectorizd representation in (4) can be ap-
proximated using the softmax function

h(z;W) ≈ σ(Wz), (5)

where the function δ(x) takes a K-dimensional vector x
as input and outputs a vector of the same dimensionality.
Specifically, the jth dimension of the output vector is de-
fined as

σ(x)j =
expαxj∑K
k=1 expαxk

, for j = 1, · · · ,K, (6)

where α controls the smoothness of the approximation and
xj denotes the jth entry of x.

The above approximation has a natural probabilistic
interpretation. Each entry in the output vector represents the
probability of that dimension being the maximum. When
α → ∞, the softmax vector converges to the binary indica-
tor vector.

The probabilistic approximation of the hash function
also lends itself to a continuous relaxation of the error
function in (2). Formally, consider WX and WY are given.
Let (hiX , h

j
Y) be the K-ary ranking hash codes of a cross-

modal pair (xi,yj), and let (pi, qj) be the softmax vectors
(i.e. pi ≡ σ(WXxi) and qj ≡ σ(WYyj)). Following the
probabilistic interpretation of the softmax vector, hiX and
hiY can be regarded as two independent discrete random
variables with the probability distribution

P (hiX = k|WX) = pik

P (hjY = k|WY) = qjk,
(7)

where k ∈ {0, · · · ,K − 1}, and pik and qjk are the kth

dimension of pi and qj respectively. The probability that

two hash codes take the same value, denoted as πij , can be
computed as

πij ≡P (hiX = hjY |WX ,WY)

=
K∑
k=1

P (hiX = k|WX)P (hjY = k|WY)

=
K∑
k=1

pikqjk = pTi qj

(8)

Based on (8) and (2), one can compute the expected loss for
a similar cross-modal pair (i.e. sij = 1) as

Eα[`ij] = P (hiX 6= hjY |WX ,WY) I(hiX 6= hjY) = 1− πij ,

where `ij is short for `(hiX , h
j
Y , sij). A similar formulation

can be applied to dissimilar pairs, resulting in the following
approximation to the error function in (2):

˜̀
ij =

{
1− πij , sij = 1
λπij , sij = 0,

(9)

By using (9), the overall objective function can be refor-
mulated accordingly:

L̃α(WX ,WY) =
∑
sij=1

(1− πij) +
∑
sij=0

λπij

=
∑
sij∈S

aijp
T
i qj + const.

= trace
(
PAQT

)
+ const,

(10)

where P = [p1 · · · pNX] and Q = [q1 · · · qNY] are K-by-
N matrices with softmax vectors in each column, and the
entries of the NX -by-NY matrix A are defined as

aij = λ− (λ+ 1)sij . (11)

In sum, we aim to solve the following relaxed problem:

min
WX ,WY

L̃α = trace
(
PAQT

)
(12)

where P, A and Q are as defined in (10).

3.6 Optimization

Intuitively, our objective in (3) is to find two subspaces for
each modality, such that the partial ranking ordering max-
imally correlates with the cross-modal similarity labels. It’s
not hard to see that (12) achieves the same goal by driving
pTi qj towards 1 for similar pairs and 0 for dissimilar pairs.
In addition, one can easily verify the following relationship
between (3) and (10):

lim
α→∞

L̃α(WX ,WY) = L(WX ,WY). (13)

Note that the approximation doesn’t change the non-
convex nature of the problem. However, the new objective
function in (12) is continuous and open to well-established
gradient descent algorithms. Specifically, the sum of loss
form in (10) leads to a straightforward stochastic gradient
descent (SGD) algorithm which approximates the expected
gradient with a single pair or a mini-batch. Since the loss

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Algorithm 1: Linear Subspace Ranking Hashing
Input: Data X, Y and cross-modal similarity labels S.
Output: Linear projections WX and WY .

1 Initialization: Set WX and WY to random values
from Gaussian distribution

2 repeat
3 Randomly select a training batch Xb,Yb and

obtain the batchwise similarity labels Sb
accordingly

4 Set A = λE− (λ+ 1)Sb
/* E is a matrix of ones. */

5 Compute P and Q by applying the softmax
function to each column of WXXb and WYYb

6 Set Qs = QAT , Ps = PAT

7 Update projection matrix WX and WY according
to equation (15)

8 until Convergence

function is the linear combination of πij ’s, we therefore only
compute the derivatives of πij as follows

∂πij
∂WX

= [pi ◦ qj − (pTi qj)pi]x
T
i

∂πij
∂WY

= [qj ◦ pi − (qTj pi)qj]y
T
j ,

(14)

where ‘◦’ stands for the element-wise Hadamard product.
The above gradients can be used to update the weights
when data samples are presented in a streaming fashion.
When all training data are available, mini-batchs are nor-
mally used since they lead to more stable convergence.
In detail, let Xb and Yb be two mini-batches randomly
sampled from DX and DY respectively. By summing pair-
wise gradients over the batches, we obtain the following
equations for weights update

WX ←WX − η[P ◦Qs −Pdiag(QT
s P)]XT

b

WY ←WY − η[Q ◦Ps −Qdiag(PTsQ)]YT
b ,

(15)

where the ‘diag’ operator outputs a diagonal matrix by
retaining the diagonal entries of a square input matrix,
Qs = QAT , Ps = PA and η is the learning rate. Note
that the notations of P,A and Q are the same as in (10)
except that they are defined over the mini-batch.

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

N
o

rm
al

iz
ed

 E
rr

o
r

Training Iteration

Emperical Loss Softmax Approximation

Fig. 1: An example of the empirical loss (3) and its softmax
approximation (12) as a function of the training iteration
number. The update rules in (15) are used with mini-batch
size set to 500. The algorithm converges in less then 50
iterations.

Algorithm 2: Sequential Learning of Multiple Codes
Input: Data X, Y and cross-modal similarity labels S.
Output: Projections {W(l)

X }Ll=1 and {W(l)
Y }Ll=1.

1 Initialization: Set the weight ωij of all pairs to one
2 for l = 1 to L do
3 Obtain W

(l)
X and W

(l)
Y using Algorithm 1

4 Compute hash codes for all samples using (1)
5 Set εl = L(WX ,WY)/(NX ·NY)
6 Evaluate the quantity σ = ln(1/εl − 1)
7 Update the weighting coefficients using

ω
(l+1)
ij = ω

(l)
ij exp[σ · `(hiX , h

j
Y , sij)]

8 Normalize ωij ’s such that
∑
i,j ω

(l+1)
ij = NX ·NY

9 end

3.7 Learning multiple hash codes
The equations in Section 3.6 are used to learn the hash
function for one code at a time. The non-convex nature
of the objective function means that there are typically
multiple local minima instead of a global one. Therefore,
a straightforward way to learn L ranking hash codes is to
repeat the procedures L times with different random ini-
tializations. This naive method takes advantage of multiple
local minima to reveal complementary ranking structure.
However, independently learned hash functions may be
redundant because they may correspond to the same local
minima.

In order to minimize code redundancy, we propose to
use Adaboost to learn multiple hash functions sequentially.
In detail, each training pair is associated with a weight ωij
which is initialized to 1 in the beginning. The weights are
updated based on whether its similarity label is correctly
predicted using the current hash function. The updated
weights are then used to learn the next hash function.
Since boosting is not the contribution of this paper, we do
not elaborate on it. More details of this standard ensemble
learning method can be found in [43].

Interestingly, the introduction of pairwise weights
doesn’t change the update equations in (15) except that A’s
entries are redefined as

aij = [λ− (λ+ 1)sij]ωij . (16)

We note that one may learn more than L hash functions
and select the best L based on the training error, which may
potentially leads to even better results. However, this is not
in the scope of this paper and thus will not be discussed in
detail here.

3.8 Discussion of different loss functions
Unlike most other cross-modal hashing algorithms, where
the loss functions are deeply coupled to the problem formu-
lations and optimization process, our ranking-based hash
learning framework can easily accommodate different loss
functions. Here we show the flexibility of the proposed
method in accommodating different loss functions with
minimal changes to the learning procedures. We will also
evaluate them in the experimental section.

In the following discussion of different loss functions, we
do not consider the trade-off parameter λ or pair’s weights

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) building (b) tree (c) sea (d) mountain

Fig. 2: Example of textual queries on the labelme image database. From (a) to (b), the query keywords are ’building’, ’tree’,
’sea’ and ’mountain’ respectively. The code length of LSRH is set to 30 bits and the top 30 results are shown. Images in the
grid are ordered from left to right and top to bottom based on the Hamming distance of their hash codes to the hash code
of the textual query.

Fig. 3: Example of image annotations by using images to query tags. The code length of LSRH is set to 30 bits and
approximately 30 of the most relevant tags are shown. The ground truth for each image is shown in green. The order of
the tags is based on the Hamming distance between hash codes.

for notation simplicity; it’s straightforward to incorporate
them into the formulation.

LSRH-L1 To start with, the loss function in (9) depends
only on πij and sij , and is equivalent to the L1 loss.

fl1(πij , sij) = |πij − sij |. (17)

This is the default loss function used in LSRH. Actually, by
representing the loss function in L1 form, one can easily
discover its resemblance to the classic logistic regression
problem with πij as the prediction and sijs as the target
variable. Such observation allows us to easily extend to
other loss functions.

LSRH-L2 The L2 loss punishes the prediction’s deviation
from target by imposing a squared error

fl2(πij , sij) = (πij − sij)2. (18)

LSRH-Exp The exponential loss function is defined as

fexp(πij , sij) = exp{−[2(πij − 0.5)][2(sij − 0.5)]}. (19)

Here we have applied the mapping from πij → 2(πij − 0.5)
to transform the range of the values from [0, 1] to [−1, 1].
Similar operations are applied to sij .

LSRH-Hinge The hinge loss uses different punishment
rules for similar and dissimilar pairs

˜̀
ij =

{
max(0.5− πij , 0), sij = 1
λ(πij − 0), sij = 0.

(20)

Note that the Hinge loss pushes the similarity scores of
similar pairs to be at least 0.5. This is reasonable as similar
pairs are only required to have a sufficiently large similarity
score, but not necessarily the maximum.

Although those loss functions seem very different in
their expressions, all of the optimization steps in Algorithm
1 remain the same except for line 4. Specifically, line 4 of
Algorithm 1 can be substituted with the following equations
when the corresponding loss functions are used:

Al2 = 2(Π− S)
Aexp = 2(E− 2S) ◦ fexp(Π,S)

Ahinge = (E− S) + S ◦ [I(Π > 0.5)−E],
(21)

where Π denotes the matrix formed by πij , fexp() and I()
apply to the input matrix in an element-wise fashion, and E
is a matrix of all ones.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

TABLE 1: Cross-modal mAP results of the proposed LSRH and compared baselines on all of the benchmark datasets. The
length of the hash code is varied from 16 bits to 64 bits and the mAP of the top 50 neighbors are reported (i.e. R = 50). The
best results are shown in bold. Our LSRH outperforms all baselines in almost all datasets and benchmarks.

Labelme Wikipedia MIRFlickr NUSWIDE

Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

Text query image

CVH 0.5630 0.5555 0.5481 0.1931 0.1982 0.2083 0.6434 0.6368 0.6291 0.4466 0.4395 0.4351
CMSSH 0.4369 0.3760 0.3153 0.1802 0.1768 0.1918 0.5997 0.5688 0.5835 0.4080 0.3927 0.3822
IMH 0.4958 0.4202 0.3679 0.2642 0.2703 0.2781 0.6406 0.6416 0.6383 0.4950 0.4975 0.4885
LSSH 0.7408 0.7913 0.8085 0.5002 0.5220 0.5168 0.6430 0.6707 0.6908 0.5013 0.5066 0.5299
CMFH 0.6938 0.7285 0.7330 0.2174 0.2265 0.2290 0.6510 0.6444 0.6461 0.4960 0.4831 0.4824
QCH 0.8151 0.8314 0.8246 0.3420 0.3908 0.3839 0.6602 0.6899 0.6988 0.5562 0.5584 0.5565
STMH 0.6487 0.7484 0.7874 0.2924 0.3251 0.3772 0.6315 0.6500 0.6596 0.4459 0.4797 0.4955
LSRH 0.8883 0.8989 0.9153 0.5459 0.6626 0.7258 0.7108 0.7223 0.7450 0.5525 0.5701 0.6068

Image query text

CVH 0.4574 0.4191 0.3946 0.1930 0.1865 0.1885 0.6381 0.6301 0.6276 0.4529 0.4356 0.4250
CMSSH 0.3857 0.3229 0.3022 0.1886 0.1749 0.1702 0.5890 0.6069 0.5790 0.4823 0.4833 0.4731
IMH 0.4447 0.3943 0.3401 0.2290 0.2331 0.2275 0.6615 0.6576 0.6554 0.4657 0.4815 0.4903
LSSH 0.6977 0.7317 0.7417 0.2284 0.2355 0.2422 0.6368 0.6421 0.6616 0.5201 0.5318 0.5372
CMFH 0.5835 0.6159 0.6187 0.2045 0.2161 0.2148 0.6528 0.6542 0.6590 0.4648 0.4249 0.4087
QCH 0.6727 0.6788 0.6899 0.2582 0.2568 0.2510 0.6595 0.7048 0.7033 0.5295 0.5463 0.5531
STMH 0.6098 0.6885 0.7310 0.2366 0.2505 0.2616 0.6387 0.6684 0.6750 0.5165 0.5617 0.5696
LSRH 0.8048 0.8211 0.8376 0.2707 0.2816 0.2914 0.7395 0.7529 0.7682 0.5450 0.5724 0.6012

0

0.2

0.4

0.6

0.8

1

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(a) Labelme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(b) Wikipedia

0.4

0.5

0.6

0.7

0.8

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(c) MIRFlickr

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(d) NUSWIDE

0

0.2

0.4

0.6

0.8

1

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(e) Labelme

0

0.1

0.2

0.3

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(f) Wikipedia

0.4

0.5

0.6

0.7

0.8

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(g) MIRFlickr

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64

P
re
c
is
io
n

L

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(h) NUSWIDE

Fig. 4: Top-100 precision of different methods on all datasets, with the hash code varying from 16 bits to 64 bits. The first
row shows the results of text-query-image and the second row shows that of image-query-text.

4 EXPERIMENTS

4.1 Datasets

To evaluate the proposed algorithm, we choose four widely-
used multimodal datasets: Wikipedia [12, 34], Labelme [11],
MIRFLICKR [12, 18] and NUS-WIDE [11, 12, 20, 34]. The
statistics of those datasets are shown in Table 2 and follow-
ing are brief descriptions of each dataset.

Wiki. The wiki [44] dataset, crawled from Wikipedia’s
“featured articles”, consists of 2, 866 documents which are
image-text pairs and annotated with semantic labels of 10
categories. Each image in this dataset is represented as a
128-D bag-of-SIFT feature vector. For text documents, we

extract the 1000-D tf-idf features over the most representa-
tive words.

LabelMe.1 The LabelMe dataset [45] consists of 2688
images annotated by the objects’ textual tags contained in
them, such as “forest” and “mountain”. Tags that occurs
less than 3 times are discarded, resulting in 245 unique
remaining tags. Each image is labeled as one of eight unique
outdoor scenes, such as coast, forest and highway. Each
image in this dataset is represented by a 512-D GIST vector
and the corresponding textual tags are represented by the
index vectors of selected tags.

1. http://people.csail.mit.edu/torralba/code/spatialenvelope/

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

MIRFLICKR.2 The MIRFLICKR dataset [46] contains
25,000 images with associated textual tags. Each image-text
pair is associated with one or more of 24 semantic labels.
Tags that appear less than 20 times are first removed and
then instances without tags or annotations are removed, re-
sulting in 16738 instances remaining. Images in this dataset
are described by 150-D edge histograms and the texts are
represented as 500-D feature vectors obtained by applying
PCA to the binary tagging vector. Instances are considered
as similar if they share at least one common label.

NUS-WIDE.3 The NUS-WIDE dataset [47] is a real-
world image dataset with 269, 648 images. Each image has
a number of textual tags and is labeled with one or more
image concepts out of 81 concepts. We select the 186, 577
image-tag pairs belonging to the 10 largest concepts. In this
dataset, the images are represented by 500-D bag-of-visual-
words (BOVW) and the image tags are represented by 1000-
D tag occurrence feature vectors.

TABLE 2: Statistics of benchmark datasets

Features Classes Size Queries
Dataset Image Text

Labelme 512 245 8 2688 573
Wikipedia 128 1000 10 2866 693
MIRFlickr 150 500 24 16738 836

NUSWIDE 500 1000 10 186577 2000

4.2 Baselines
We have compared the proposed LSRH with seven well-
known cross-modal hashing methods: Cross-view Hash-
ing (CVH) [28], Cross-modal Similarity Sensitive Hash-
ing (CMSSH) [8], Inter-media Hashing (IMH) [10], Latent
Semantic Sparse Hashing (LSSH) [11], Collective Matrix
Factorization Hashing (CMFH) [12], Semantic Topic Mul-
timodal Hashing (STMH) [21] and Quantization Correlation
Hashing (QCH) [20]. Those algorithms have been briefly
introduced in Section 2 and are considered to be the current
state-of-the-arts in cross-modal hash learning. The parame-
ters for all the compared algorithms are either default ones
or chosen according to the suggestions of the original papers
to give the best performance.

4.3 Evaluation metrics
We evaluate the retrieval performance of both text-query-
image and image-query-text. Specifically, we follow the
widely used metrics [9, 10, 11, 20, 30]: mean Average
Precision (mAP), top-k precision and precision-recall for
both retrieval tasks. Those evaluation metrics are defined
as follows:

Top-k precision The top-k precision is defined as the
ratio of relevant items among the retrieved top k instances
in terms of Hamming distance. This metric is averaged over
all queries in our evaluation.

mAP The mean average precision is defined as

mAP =
1

Q

Q∑
q=1

1

R

R∑
r=1

Pq(r)δq(r), (22)

2. http://press.liacs.nl/mirflickr/
3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

where Q is the size of the query set, Pq(r) denotes the top-k
precision of the qth query, and δq(r) indicates whether the
kth data item is relevant to the qth query.

Precision-recall Precision-recall reflects the precision
values at different recall levels and it’s a good indicator of
the overall performance of different algorithms. Typically,
the area under the precision-recall curve is computed and a
larger value indicates better performance.

4.4 Experiment settings
We follow previous work [11, 12, 20, 21] in choosing the
training set and query set. In detail, for Labelme and
Wikipedia, 20% of the data points are randomly selected
as the query set, and the remaining data are used as
the training set and retrieval database. For MIRFlickr and
NUSWIDE, we randomly select approximately 5% and 1%
of the dataset as queries respectively. The remaining data
are used as the database for cross-modal retrieval. Moreover,
we randomly select 5000 image-text pairs from the database
for hash learning and apply the learned hash functions
to the entire database to generate the hash codes. Such
practice has been widely used in hash learning research
[8, 11, 12, 18, 20, 21, 28] because it simulates real-world
scenarios where the labeled data are limited compared to the
entire data corpus, and this can well-demonstrate the out-of-
sample extension capability of different hashing methods.

LSRH takes a single primary parameter: the subspace
dimension K; and two hyper-parameters λ and β. We
choose those parameters by using 5-fold cross-validation
on a held-out subset in the training set. Specifically, we
use linear search in log scale for K, and fix it to 4 for
all the experiments. The effect of subspace dimension K
will be discussed in detail in Section 4.8. As for λ and β,
we use linear search over {0.5, 1.0, 2.0} and {0.5, 0.8, 1.0}
respectively.

In contrast to the binary hashing algorithms, our hashing
code is K-ary. Therefore, we set L = bNb/dlog2Kec when
comparing with other binary hashing codes at Nb bits to
ensure fairness. All the experimental results are averaged
over 5 independent runs.

4.5 Comparison with baselines
We vary the hash code from 16 bits to 64 bits and record
the mAPs of LSRH and baselines on all the benchmark
datasets in Table 1. We can observe that LSRH is compet-
itive to or outperforms all the compared methods across
different datasets and code lengths. In fact, the average
performance advantage of LSRH is more than 5% across
the four datasets. Furthermore, when it comes to individual
benchmarks, LSRH can beat the best baseline by up to
40%, for example, in the 64-bit text-query-image task on
Wikipedia, while most of the baselines are only competitive
in some benchmarks or datasets. For instance, STMH is very
competitive in the image-query-text task on NUSWIDE, but
not as competitive in the text-query-image task on the same
dataset; LSSH performs very well in the text-query-image
task on Wikipedia, but is not equally good in the the image-
query-text task compared to some other baselines.

We find that the performance difference between text-
query-image and image-query-text tasks are very close in

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 3: Performance results of the proposed LSRH and baselines in terms of top-k precision, precision-recall and
training/testing time on all of the benchmark datasets. The code length is set to 32 bits in this experiment and the precision
of the top 100 neighbors is reported. The precision-recall values are computed as the area under the precision-recall curve.
The best results for top-k precision and precision-recall are shown in bold. Our LSRH consistently outperforms all baselines
in different performance metrics with only moderate training and testing time.

Time (s) Precision (top 100) Precesion-Recall

Method #Train Train Test Text query image Image query text Average Text query image Image query text Average

Labelme

CVH 2151 1.3 0.005 0.3974 0.3250 0.3612 0.2917 0.2462 0.2690
CMSSH 2151 481.0 0.005 0.3172 0.2785 0.2979 0.2359 0.2311 0.2335
IMH 2151 5.5 0.008 0.3076 0.2984 0.3030 0.2270 0.2218 0.2244
LSSH 2151 263.4 14.9 0.7015 0.6805 0.6910 0.6234 0.5602 0.5918
CMFH 2151 10.8 0.005 0.5810 0.5136 0.5473 0.4821 0.3963 0.4392
QCH 2151 143.2 0.005 0.7796 0.6494 0.7145 0.5803 0.5452 0.5628
STMH 2151 3.7 0.2 0.6614 0.6375 0.6323 0.5727 0.5417 0.5572
LSRH 2151 13.7 0.009 0.8944 0.8107 0.8526 0.8756 0.8485 0.8626

Wikipedia

CVH 2173 0.08 0.005 0.1246 0.1237 0.1242 0.1147 0.1148 0.1148
CMSSH 2173 623.5 0.005 0.1268 0.1279 0.1207 0.1208 0.1205 0.1160
IMH 2173 5.7 0.01 0.1834 0.1697 0.1766 0.1430 0.1385 0.1408
LSSH 2173 136.3 8.8 0.3554 0.1878 0.2716 0.2470 0.1443 0.1957
CMFH 2173 9.3 0.006 0.1466 0.1469 0.1468 0.1240 0.1247 0.1244
QCH 2173 107.8 0.005 0.2813 0.2286 0.2550 0.2094 0.1882 0.1988
STMH 2173 6.3 0.5 0.2360 0.2081 0.2221 0.1863 0.1669 0.1766
LSRH 2173 14.2 0.02 0.4983 0.2584 0.3784 0.3902 0.2325 0.3114

MIRFlickr

CVH 5000 0.05 0.02 0.5974 0.5947 0.5961 0.5720 0.5716 0.5718
CMSSH 5000 350.1 0.02 0.5604 0.5695 0.5650 0.5580 0.5575 0.5578
IMH 5000 41.2 0.04 0.6090 0.6249 0.6170 0.5808 0.5809 0.5809
LSSH 5000 163.7 36.1 0.6297 0.6093 0.6195 0.5784 0.5759 0.5772
CMFH 5000 12.0 0.02 0.6100 0.6183 0.6142 0.5784 0.5787 0.5786
QCH 5000 228.7 0.02 0.6685 0.6698 0.6692 0.6011 0.6026 0.6019
STMH 5000 7.9 1.6 0.6185 0.6384 0.6285 0.5857 0.5842 0.5850
LSRH 5000 26.6 0.03 0.7016 0.7301 0.7159 0.6688 0.6844 0.6766

NUSWIDE

CVH 5000 0.8 0.4 0.3874 0.3768 0.3821 0.3462 0.3421 0.3445
CMSSH 5000 1084.4 0.4 0.3395 0.4229 0.3812 0.3211 0.3252 0.3418
IMH 5000 42.1 0.7 0.4549 0.4349 0.4449 0.3794 0.3729 0.3769
LSSH 5000 289.3 435.9 0.4527 0.4848 0.4688 0.3611 0.3510 0.3576
CMFH 5000 30.9 0.5 0.4348 0.3652 0.4000 0.3574 0.3483 0.3639
QCH 5000 586.6 0.4 0.5227 0.5064 0.5146 0.4341 0.4292 0.4312
STMH 5000 15.0 38.6 0.4374 0.5194 0.4784 0.3705 0.3549 0.3570
LSRH 5000 32.5 2.6 0.5440 0.5398 0.5419 0.5132 0.5118 0.5125

most of the datasets except for Wikipedia. Such observation
is consistent with the results in previous research [11, 20, 21].
As explained in [11], there is a significant semantic gap
between the two modalities of Wikipedia; the texts in
Wikipedia are much better than the images in describing the
semantic concept, thus leading to lower mAPs when images
are used to query against the text database.

Another interesting finding is that the performance of
LSRH always increases when the hash code becomes longer,
while the performances of some of the baselines such as
CVH, CMSSH and IMH do not increase or even slightly
drop with longer codes. This has also been observed by
[12, 34]. In fact, those methods are similar in the sense that
they all solve certain eigen-decomposition problems with
orthogonality constraints to reduce bit correlations. As a
result, most discriminative information is contained within
the first few bits. As the code becomes longer, the hash code
will be gradually dominated by indiscriminative hash bits,

which do not contribute to the retrieval performance.
In addition to mAP, we also report the performances of

different methods in terms of K-nearest neighbor precision
and precision-recall. The results for those benchmarks on
all the datasets are shown in Table 3, Figure 5 and Figure 6.
Note that the precision-recall values in Table 3 are computed
as the area under the precision-recall curves, and larger val-
ues mean better overall performance. From Table 3, we can
observe that the relative performances of different methods
are generally consistent with that of mAP. Specifically, LSRH
consistently outperforms all the baselines across different
datasets in both top-k precision and precision-recall, and
the average performance gap between LSRH and the best
baselines on the four datasets are 35%, 48%, 10% and 12%
respectively.

In addition to the retrieval performance metrics, we
have also shown the training and testing time for different
algorithms under the same system settings in Table 3. The

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0.1

0.3

0.5

0.7

0.9

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(a) Labelme

0.1

0.2

0.3

0.4

0.5

0.6

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(b) Wikipedia

0.55

0.6

0.65

0.7

0.75

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(c) MIRFlickr

0.3

0.35

0.4

0.45

0.5

0.55

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(d) NUSWIDE

0.1

0.3

0.5

0.7

0.9

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(e) Labelme

0.1

0.15

0.2

0.25

0.3

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(f) Wikipedia

0.55

0.6

0.65

0.7

0.75

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(g) MIRFlickr

0.35

0.4

0.45

0.5

0.55

0.6

100 200 400 600 800 1000

P
re
c
is
io
n

k

LSRH QCH STMH LSSH

CMFH IMH CVH CMSSH

(h) NUSWIDE

Fig. 5: Top-k precision of all methods with 32-bit hash code and k varies from 100 to 1000. The first row shows the results of
text-query-image and the second row shows that of image-query-text. The proposed LSRH outperforms all the baselines.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(a) Labelme

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(b) Wikipedia

0.55

0.6

0.65

0.7

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(c) MIRFlickr

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(d) NUSWIDE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(e) Labelme

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(f) Wikipedia

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(g) MIRFlickr

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 0.2 0.4 0.6 0.8 1

P
re
c
is
io
n

Recall

LSRH QCH STMH LSSH CMFH IMH CVH CMSSH

(h) NUSWIDE

Fig. 6: Precision-recall curves with 32-bit hash code. The first row shows the results of text-query-image and the second
row shows that of image-query-text. Larger area under the curve indicates better performance. LSRH achieves the best
performance.

results are shown in seconds. We note that the proposed
LSRH can be trained very fast compared to most of the
baseline methods; while some of the competitive baselines
such as LSSH and QCH take much longer to train. In
terms of testing time, linear hashing algorithms are clear
winners since the hash encoding stage only involves simple
linear transformations followed by zero-thresholding. LSRH
also falls into the linear hashing category since the ranking
operation is performed upon linear projections. The close
testing time of LSRH compared to most of the other methods
confirms the efficiency of ranking-based hash encoding.
We note that LSSH and STMH are two exceptions in the

experiments with much longer testing time. This is caused
by large-matrix inverse computations or nonlinear transfor-
mations in the hash encoding step, thus making them less
effective in real-world applications that require online hash
encoding. The moderate training and testing time further
confirms the effectiveness of the proposed LSRH.

Overall, the proposed LSRH consistently achieves supe-
rior performance against the baselines in different metrics
and datasets, with only moderate training and testing time.
Such good performance of LSRH can be attributed to sev-
eral reasons. Firstly, the ranking-based hash functions can
be very useful in preserving the cross-modal similarities.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Second, the proposed hash learning procedures are both
efficient and effective in learning the ranking-based hash
functions. Third, the ranking-structure of cross-modal data
exploited by the proposed hashing framework is very useful
in bridging the semantic gap between different modalities.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64

m
A
P

L

LSRH-Seq LSRH-Rand

(a) MIRFlickr (tex-query-image)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16 32 64

m
A
P

L

LSRH-Seq LSRH-Rand

(b) MIRFlickr (image-query-text)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64

m
A
P

L

LSRH-Seq LSRH-Rand

(c) NUSWIDE (tex-query-image)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

16 32 64

m
A
P

L

LSRH-Seq LSRH-Rand

(d) NUSWIDE (image-query-text)

Fig. 7: Comparison of different strategies in generating
multiple hash codes. The results are obtained with 32-bit
hash code on MIRFlickr and NUSWIDE.

4.6 Effect of sequential learning
In this section, we study the role of boosting in learning
multiple hash codes. Specifically, we consider a randomized
version of LSRH, denoted as LSRH-Rand, where each hash
code is learned independently with random initialization.
To differentiate from LSRH-Rand, we denote the sequential
version of LSRH as LSRH-Seq. The results of this experiment
are shown in Figure 7. We note that LSRH-Seq demon-
strates consistent performance boost over LSRH-Rand, with
approximately 10% lead on average. The performance gap
is mainly due to the code redundancy in LSRH-Rand.
Specifically, in LSRH-Rand, multiple independent random
initializations may correspond to the same local minima of
the objective function; as a result, there exist redundant hash
functions that compromise the amount of discriminative
information contained in the resultant hash codes. On the
other hand, LSRH-Seq learns each new code by taking
advantage of the information from previous ones and focus
on a different subset of the training data. Therefore, LSRH-
Seq codes contain more discriminative information than
LSRH-Rand codes of the same length.

4.7 Different loss functions
The proposed ranking-hash framework is able to incorpo-
rate different types of loss functions with minimal modifica-
tion to the hash learning procedures. Here we compare the
the performance of four different loss functions. Specifically,
the loss functions included in this experiment are L1, L2,

exponential and hinge loss. Details of those loss functions
have been explained in Section 3.8. The results are illustrated
in Table 4 and Figure 8. We observe that the default L1
loss function usually achieves the best performance. This
may be explained by the fact that the L1 loss directly
follows from the empirical loss, which is closely related
to the performance metrics used in the similarity search.
On the other hand, the performance values of different loss
functions are very close in most test cases. The slight differ-
ences in the performances are caused by different ways of
assigning penalties to true or false similarity predictions. In
general, the ability to accommodate different loss functions
in a unified hash learning framework greatly extends the
flexibility of LSRH.

TABLE 4: mAP and top-100 precision of LSRH using differ-
ent loss functions. The hash code length is set to 32 bits

Text query image Image query text

Loss function mAP Precision mAP Precision

Labelme

LSRH-L1 0.8931 0.8898 0.8167 0.8108
LSRH-L2 0.8664 0.8547 0.8136 0.7806
LSRH-Exp 0.8569 0.8587 0.8005 0.7854
LSRH-Hinge 0.8597 0.8656 0.8027 0.7981

Wikipedia

LSRH-L1 0.6168 0.4730 0.2849 0.2569
LSRH-L2 0.4360 0.3343 0.2813 0.2518
LSRH-Exp 0.4367 0.3357 0.2874 0.2580
LSRH-Hinge 0.5292 0.3966 0.2771 0.2479

MIRFlickr

LSRH-L1 0.7230 0.7008 0.7680 0.7392
LSRH-L2 0.6774 0.6526 0.6712 0.6421
LSRH-Exp 0.6730 0.6506 0.6963 0.6718
LSRH-Hinge 0.6995 0.6721 0.7474 0.7120

NUSWIDE

LSRH-L1 0.5855 0.5525 0.5483 0.5198
LSRH-L2 0.5314 0.4948 0.5412 0.5193
LSRH-Exp 0.5777 0.5474 0.5997 0.5660
LSRH-Hinge 0.5849 0.5315 0.5507 0.5177

4.8 Effect of subspace dimension
Here we study the performance of LSRH with different
subspace dimension K. In this experiment, we vary K from
2 up to 32 in linear scale of log2K (i.e. K = 21, · · · , 25).
Note that the choice of K is not restricted to the powers of
two, and the reason for our settings here is to make sure
that there’s a bijective mapping from each K-ary code to
a binary code with the same number of bits. Recall that
we train bNb/dlog2Kec LSRH codes when evaluating the
performance at Nb bits. Here we choose Nb to be 60 bits
since it is the common multiple of 1 to 5. This way, we can
make sure that the same amount of information is contained
in each LSRH codeword irrespective of the choice of K.
The results of this experiment are shown in Figure 9. We
note that the effect of K is different on different datasets
and retrieval tasks. For example, the performance of both
retrieval tasks on Labelme doesn’t change much when K
varies from 4 to 32; while on MIRFlickr, the performance of

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1

LSRH-L2

LSRH-Exp

LSRH-Hinge

(a) Labelme

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1

LSRH-L2

LSRH-Exp

LSRH-Hinge

(b) Wikipedia

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1 LSRH-L2 LSRH-Exp LSRH-Hinge

(c) MIRFlickr

0.1

0.2

0.3

0.4

0.5

0.6

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1 LSRH-L2 LSRH-Exp LSRH-Hinge

(d) NUSWIDE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1

LSRH-L2

LSRH-Exp

LSRH-Hinge

(e) Labelme

0.1

0.15

0.2

0.25

0.3

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1

LSRH-L2

LSRH-Exp

LSRH-Hinge

(f) Wikipedia

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1 LSRH-L2 LSRH-Exp LSRH-Hinge

(g) MIRFlickr

0.1

0.2

0.3

0.4

0.5

0.6

100 200 400 600 800 1000

P
re
ci
si
o
n

k

LSRH-L1 LSRH-L2 LSRH-Exp LSRH-Hinge

(h) NUSWIDE

Fig. 8: Top-k precision of LSRH trained with different loss functions. The length of the hash code is set to 32 bits and k
varies from 100 to 1000. The first and second rows show the results of text-query-image and image-query-text respectively.

text-query-image slightly decreases with the increase of K.
Such distinctions indicate that the ranking-structures inher-
ent in different datasets are different and the best practice
is to use cross-validation to choose the optimal subspace
dimension. Overall, we find that K = 4 is an all-around
good choice across different benchmarks and datasets.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Text query image Image query text

K = 2 K = 4 K = 8 K = 16 K = 32

(a) Labelme

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Text query image Image query text

K = 2 K = 4 K = 8 K = 16 K = 32

(b) Wikipedia

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Text query image Image query text

K = 2 K = 4 K = 8 K = 16 K = 32

(c) MIRFlickr

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Text query image Image query text

K = 2 K = 4 K = 8 K = 16 K = 32

(d) NUSWIDE

Fig. 9: The mAP with 60-bit hash code under different
choices of subspace dimensions. K = 4 leads to the best
overall performance.

4.9 Scalability Study

In order to test the scalability of the proposed hash learning
method, we profile its training time under varying training
sizes and compare with the baseline methods. Specifically,
we vary the training size from 106 to 108 pairs on two of
the larger datasets: MIRFlickr and NUSWIDE. All of the
profiled algorithms run on the same system with Intel Xeon
E5-2680 CPU @ 2.5 GHz and 128 GB of memory. The results
of this test are summarized in Table 5. Note that all of the
compared algorithms are implemented using MATLAB, and
are therefore comparable under the same test settings. We
can observe that LSRH can be trained significantly faster
than the most competitive baselines such as LSSH and
QCH. Additionally, the training time of LSRH only increases
moderately with the increase in training size. The short
training time and good scalability with large training sets
demonstrate the effectiveness of our learning procedures.

TABLE 5: Training time of 32-bit hash code on MIRFlickr
and NUSWIDE. The training size is varied from 106 to 108

pairs and the results are in seconds.

Training size (pairs)

Method 106 107 108 106 107 108

MIRFlickr NUSWIDE

CVH 0.04 0.04 0.07 0.8 1.1 1.1
CMSSH 197.8 219.2 220.1 508.6 504.9 508.6
IMH 0.5 5.0 119.4 0.6 5.3 119.7
LSSH 536.7 415.7 610.6 383.0 396.7 711.7
CMFH 1.2 6.2 28.6 3.1 10.6 53.8
QCH 46.8 134.5 366.1 89.4 234.0 603.3
STMH 6.8 16.1 36.5 10.9 26.0 66.6
LSRH 4.5 9.6 33.2 6.7 11.6 34.7

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel cross-modal hashing
method, referred to as Linear Subspace Ranking Hashing
(LSRH), for large-scale cross-modal similarity search. Specif-
ically, we exploit a new class of hash functions based on
the ranking structure of feature subspaces. For hash func-
tion learning, we develop an effective ranking-based hash
learning framework that can flexibly accommodate different
loss functions with minimal changes to the learning pro-
cedures. The overall learning procedure leads to two sets
of optimal ranking subspaces that maximally preserve the
cross-modal similarity. We conduct extensive experiments
on widely used multimodal datasets and compare with a
range of state-of-the-art cross-modal hashing methods. The
experimental results demonstrate the superiority of LSRH
in generating highly discriminative compact hash codes for
cross-modal retrieval tasks.

Our future work consists of two directions to further
push the limits of ranking-based hashing. The first direction
is to study the ranking structure of nonlinear subspaces
(e.g. kernel space), which may potentially reveal more dis-
criminative ranking structure that cannot be discovered by
linear subspaces. The second direction involves extending
the single-layer ranking function to a multi-layer end-to-
end deep network which incorporates feature learning and
ranking encoding in a seamless deep learning architecture.

ACKNOWLEDGEMENT

This material is based upon work partially supported by the
NASA under Grant Number NNX15AV40A. Any opinions,
findings, and conclusion or recommendations expressed in
this materials are those of the authors and do not necessarily
reflect the views of NASA.

REFERENCES

[1] K. Grauman and R. Fergus, “Learning binary hash
codes for large-scale image search,” in Machine learning
for computer vision. Springer, 2013, pp. 49–87.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” in Proceedings of the twentieth annual
symposium on Computational geometry. ACM, 2004, pp.
253–262.

[3] M. Norouzi and D. J. Fleet, “Minimal loss hashing for
compact binary codes,” in ICML, 2011), 2011, pp. 353–
360.

[4] Y. Gong and S. Lazebnik, “Iterative quantization: A
procrustean approach to learning binary codes,” in
Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE, 2011, pp. 817–824.

[5] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and
D. Suter, “Fast supervised hashing with decision trees
for high-dimensional data,” in Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on.
IEEE, 2014, pp. 1971–1978.

[6] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sam-
pling based discrete supervised hashing,” 2016.

[7] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised
discrete hashing,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015, pp. 37–
45.

[8] M. M. Bronstein, A. M. Bronstein, F. Michel, and
N. Paragios, “Data fusion through cross-modality met-
ric learning using similarity-sensitive hashing,” in
CVPR, 2010, pp. 3594–3601.

[9] Y. Zhen and D.-Y. Yeung, “Co-regularized hashing for
multimodal data,” in NIPS, 2012, pp. 1376–1384.

[10] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen,
“Inter-media hashing for large-scale retrieval from het-
erogeneous data sources,” in ACM SIGMOD, 2013, pp.
785–796.

[11] J. Zhou, G. Ding, and Y. Guo, “Latent semantic sparse
hashing for cross-modal similarity search,” in ACM
SIGIR, 2014, pp. 415–424.

[12] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factor-
ization hashing for multimodal data,” in CVPR, 2014,
pp. 2083–2090.

[13] K. Li, J. Ye, and K. A. Hua, “What’s making that
sound?” in Proceedings of the 22Nd ACM International
Conference on Multimedia, ser. MM ’14. ACM, 2014, pp.
147–156.

[14] Y. Zhuang, Z. Yu, W. Wang, F. Wu, S. Tang, and J. Shao,
“Cross-media hashing with neural networks,” in ACM
MM, 2014, pp. 901–904.

[15] D. Zhang, F. Wang, and L. Si, “Composite hashing
with multiple information sources,” in Proceedings of
the 34th international ACM SIGIR conference on Research
and development in Information Retrieval. ACM, 2011,
pp. 225–234.

[16] J. Masci, M. M. Bronstein, A. M. Bronstein, and
J. Schmidhuber, “Multimodal similarity-preserving
hashing,” TPAMI, 2014.

[17] M. Ou, P. Cui, F. Wang, J. Wang, W. Zhu, and S. Yang,
“Comparing apples to oranges: a scalable solution with
heterogeneous hashing,” in Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2013, pp. 230–238.

[18] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-
preserving hashing for cross-view retrieval,” in Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3864–3872.

[19] S. Moran and V. Lavrenko, “Regularised cross-modal
hashing,” in Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, ser. SIGIR ’15. ACM, 2015, pp. 907–
910.

[20] B. Wu, Q. Yang, W.-S. Zheng, Y. Wang, and J. Wang,
“Quantized correlation hashing for fast cross-modal
search,” in Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI, 2015.

[21] D. Wang, X. Gao, X. Wang, and L. He, “Semantic topic
multimodal hashing for cross-media retrieval,” in Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 2015, pp. 3890–3896.

[22] M. Melucci, “On rank correlation in information re-
trieval evaluation,” in ACM SIGIR Forum, vol. 41, no. 1.
ACM, 2007, pp. 18–33.

[23] J. Yagnik, D. Strelow, D. A. Ross, and R.-s. Lin, “The
power of comparative reasoning,” in ICCV, 2011, pp.
2431–2438.

0162-8828 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2016.2610969, IEEE
Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[24] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzen-
macher, “Min-wise independent permutations,” Journal
of Computer and System Sciences, vol. 60, no. 3, pp. 630 –
659, 2000.

[25] K. Li, G. Qi, J. Ye, and K. Hua, “Cross-modal hashing
through ranking subspace learning,” in IEEE Interna-
tional Conference on Multimedia and Expo, ICME, 2016.

[26] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang,
“Supervised hashing with kernels,” in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012, pp. 2074–2081.

[27] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving
hashing for approximate nearest neighbor search,” in
Proceedings of the 21st ACM international conference on
Multimedia. ACM, 2013, pp. 133–142.

[28] S. Kumar and R. Udupa, “Learning hash functions for
cross-view similarity search,” in IJCAI, 2011, vol. 22,
no. 1, p. 1360.

[29] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hash-
ing,” in Advances in neural information processing systems,
2009, pp. 1753–1760.

[30] N. Quadrianto and C. H. Lampert, “Learning multi-
view neighborhood preserving projections,” in ICML,
2011, pp. 425–432.

[31] Y. Zhen and D.-Y. Yeung, “A probabilistic model for
multimodal hash function learning,” in SIGKDD, 2012.

[32] D. Zhai, H. Chang, Y. Zhen, X. Liu, X. Chen, and
W. Gao, “Parametric local multimodal hashing for
cross-view similarity search,” in IJCAI, 2013, pp. 2754–
2760.

[33] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, “Linear
cross-modal hashing for efficient multimedia search,”
in ACM MM, 2013, pp. 143–152.

[34] D. Zhang and W.-J. Li, “Large-scale supervised mul-
timodal hashing with semantic correlation maximiza-
tion,” in AAAI, 2014.

[35] F. Wu, Z. Yu, Y. Yang, S. Tang, Y. Zhang, and Y. Zhuang,
“Sparse multi-modal hashing,” IEEE TMM, 2014.

[36] H. L. Liu, J. Rongrong, W. Yongjian, and H. Gang, “Su-
pervised matrix factorization for cross-modality hash-
ing,” in IJCAI, 2016.

[37] T. Zhang and J. Wang, “Collaborative quantization for
cross-modal similarity search.”

[38] G. Irie, H. Arai, and Y. Taniguchi, “Alternating co-
quantization for cross-modal hashing,” in Proceedings
of the IEEE International Conference on Computer Vision,
2015, pp. 1886–1894.

[39] D. Wang, P. Cui, M. Ou, and W. Zhu, “Deep multimodal
hashing with orthogonal regularization,” in Proceedings
of the 24th International Conference on Artificial Intelli-
gence. AAAI Press, 2015, pp. 2291–2297.

[40] Y. Cao, M. Long, J. Wang, and H. Zhu, “Correlation au-
toencoder hashing for supervised cross-modal search,”
in Proceedings of the 2016 ACM on International Confer-
ence on Multimedia Retrieval. ACM, 2016, pp. 197–204.

[41] Y. Cao, M. Long, W. Jianmin, Q. Yang, and P. Yu, “Deep
visual-semantic hashing for cross-modal retrieval,” in
SIGKDD, 2016.

[42] Q.-Y. Jiang and W.-J. Li, “Deep cross-modal hashing,”
arXiv preprint arXiv:1602.02255, 2016.

[43] C. M. Bishop, Pattern recognition and machine learning.

springer, 2006.
[44] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle,

G. Lanckriet, R. Levy, and N. Vasconcelos, “A New
Approach to Cross-Modal Multimedia Retrieval,” in
ACM MM, 2010, 2010, pp. 251–260.

[45] A. Oliva and A. Torralba, “Modeling the shape of the
scene: A holistic representation of the spatial enve-
lope,” International journal of computer vision, vol. 42,
no. 3, pp. 145–175, 2001.

[46] M. J. Huiskes and M. S. Lew, “The mir flickr retrieval
evaluation,” in MIR ’08: Proceedings of the 2008 ACM
International Conference on Multimedia Information Re-
trieval. New York, NY, USA: ACM, 2008.

[47] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and
Y. Zheng, “Nus-wide: A real-world web image
database from national university of singapore,” in
Proceedings of the ACM International Conference on Image
and Video Retrieval, ser. CIVR ’09. New York, NY, USA:
ACM, 2009, pp. 48:1–48:9.

Kai Li received the B.S. degree in Automation
from Huazhong University of Science and Tech-
nology, Wuhan, China, in 2010. He is currently
working toward the PhD degree in the Depart-
ment of Computer Science, University of Cen-
tral Florida. His research interests include infor-
mation retrieval, machine learning, multimedia,
and computer vision and pattern recognition. His
current focus is on multimedia hashing for large-
scale similarity search.
Jun Ye holds a M.S. degree in Computer Sci-
ence from Beihang University, Beijing, China, in
2010. He is currently working toward the PhD
degree in the Department of Computer Science,
University of Central Florida. His research in-
terests include multimedia retrieval, multimodal
data analysis and machine learning. His current
focus is on human-centric live video computing
and human action recognition.

Guojun Qi received the PhD degree from the
University of Illinois at Urbana-Champaign, in
December 2013. His research interests include
pattern recognition, machine learning, computer
vision, multimedia, and data mining. He received
twice IBM PhD fellowships, and Microsoft fel-
lowship. He is the recipient of the Best Paper
Award at the 15th ACM International Conference
on Multimedia, Augsburg, Germany, 2007. He is
currently a faculty member with the Department
of Electrical Engineering and Computer Science

at the University of Central Florida, and has served as program commit-
tee member and reviewer for many academic conferences and journals
in the fields of pattern recognition, machine learning, data mining, com-
puter vision, and multimedia.

Kien A. Hua is a Pegasus Professor in the
Computer Science Department at University of
Central Florida, and he is the Director of the Data
Systems Lab. He served as the Associate Dean
for Research of the College of Engineering and
Computer Science at UCF. Prior to joining the
university, he was with IBM. Dr.Hua received his
B.S. in Computer Science, and M.S. and Ph.D.
in Electrical Engineering, all from the University
of Illinois at Urbana-Champaign. His diverse ex-
pertise includes network and wireless commu-

nications, image/video computing, sensor networks, medical imaging,
databases, mobile computing, and intelligent transportation systems. He
has published widely, with over 10 papers recognized as best/top papers
at conferences and a journal. Dr. Hua has served as a Conference Chair,
an Associate Chair, and a Technical Program Committee Member of
numerous international conferences, as well as on the editorial boards
of a number of professional journals. Dr. Hua is a Fellow of IEEE.

